Dr. Victor Rosenthal's Summarized CV:

Dr. Rosenthal is a specialist in Internal Medicine and Infectious Diseases in Buenos Aires. He holds an Infectious Diseases fellowship at the University of Wisconsin. He is a graduate in Clinical Effectiveness, from Harvard University. He is certified on Infection Control and Hospital Epidemiology.

Dr. Rosenthal is the founder and chairman of the International Nosocomial Infection Control Consortium (INICC), a nonprofit international research center which focuses on Healthcare-Associated Infections collaborating with more than 1000 researchers in more than 200 cities in 54 countries.

He is Coauthor of JCI guidelines to prevent CLAB. He is a Task Force Member and Reviewer of the Infection Control Guidelines for the World Health Organization (WHO), He has collaborated with edition of the Infection Control Guidelines of Argentina, Brazil, Colombia, Peru, Hong Kong, Taiwan, China and several other countries.

He is an editorial board member and scientific reviewer of several international peer reviewed journals, such as "Lancet", "American Journal of Infection Control (AJIC)"; "Infection Control and Hospital Epidemiology" (ICHE) ;and several others.

Being an author of more than 350 scientific publications and book chapters worldwide, Dr. Rosenthal has received several awards granted at different international scientific meetings, including APIC, IFIC, Pan American Meetings, and others.

7th GCC Conference on Infection Prevention & Control Kuwait December 1st to 3rd 2013

"Burden of Health Care Acquired Infections Internationally: Findings of INICC"

> Dr. Victor D. Rosenthal, MD, MSC, CIC INICC Founder and Chairman victor_rosenthal@inicc.org

The burden of endemic health care-associated infection in High-Income countries

Number of national and multicentre studies reporting health care-associated infection in high-income coutries, 1995-2010

The burden of endemic health care-associated infection in High-Income countries

Incidence of overall health care-associated infection and device-associated infection in high-risk adult patients in high-income countries, 1995-2010

The burden of endemic health care-associated infection in lowand middle-income countries

Number of studies* reporting health care-associated infection in low- and middle-income coutries, 1995-2010

The burden of endemic health care-associated infection in low- and middle-income countries

Incidence of overall health care-associated infection and device-associated infection in high-risk patients in low- and middle-income countries, 1995-2010

Robert A. Weinstein, Section Editor

Central Line–Associated Bloodstream Infections in Limited-Resources Countries: A Review of the Literature

Victor D. Rosenthal

Bernal Medical Center, Infection Control and Infectious Diseases Department, Buenos Aires, Argentina

Central line–associated bloodstream infections (CLABSIs) are considered a significant cause of mortality in hospitalized patients; however, the incidence of CLABSIs in limited-resources countries has not been explored analytically. Likewise, the appropriate interventions to prevent, control, and reduce CLABSIs have yet to be analyzed thoroughly. This review demonstrates that CLABSIs are associated with significant extra mortality, with an odds ratio ranging from 2.8 to 9.5. The results of 6 sequential prospective interventional studies showed that hand hygiene and educational programs were related to a significant reduction in CLABSI rates. CLABSI rates in limited-resources countries are higher than US National Healthcare Safety Network benchmark rates and have a significant impact on mortality. Studies showing successful interventions for a reduction in CLABSIs are few. Subsequently, it can be inferred that additional epidemiological studies need to be conducted to achieve an appreciation of the effects of CLABSIs and to develop more-definitive approaches for CLABSI prevention in the form of practical, low-cost, low-technology measures that are feasible to implement in limited-resources countries.

Rosenthal, V. D. (2009). "Central line-associated bloodstream infections in limited-resource countries: a review of the literature." <u>Clinical infectious diseases : an official publication of the Infectious</u> <u>Diseases Society of America 49(12): 1899-1907.</u> Pooled cumulative incidence densities for CLABSI in adult ICU patients, In limited resources countries-Review of the literature

Source	Country/Countrie s	Study Period	CLABSI per 1,000 CL days
Systematic review of the literature (1)	Limited resources countries	1995-2010	12.2

1. Rosenthal, V. D. (2009). "Central line-associated bloodstream infections in limited-resource countries: a review of the literature." <u>Clinical infectious diseases: an official publication of the Infectious Diseases Society of America **49**(12): 1899-1907.</u>

Central Line–Associated Bloodstream Infections in Limited-Resources Countries: A Review of the Literature

Victor D. Rosenthal

Reprints or correspondence: Dr Bernal Medical Center, Infection Control and Infectious Diseases Dept, Lavalleja 305, Floor 9, Apr B, Buenos Aires, 1414, Argentina (victor_ rosenthal@inicc.org).

Clinical Infectious Diseases 2009; 49:000-000 © 2009 by the Infectious Diseases Society of America. All rights reserved.

Peripheral catheter with no sterile catheter dressing

Three ways stop cock (open connector)

Central line with no sterile dressing

Multiple use vials with inserted needles

CL insertion without maximal barriers

Single use vials, used multiple times

COMPARING HAI RATES OF USA AND EUROPE WITH INTERNATIONAL DATA: WHO PAPERS

W Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis

Benedetta Allegranzi, Sepideh Bagheri Nejad, Christophe Combescure, Wilco Graafmans; Homa Attar, Liam Donaldson, Didier Pittet

Summary

6736(10)61458-4

See Commentpage 186

Geneva, Switzerland

(B Allegranzi MD, SBagheri Nejad MD, W Graafmans PhD, HAttar PhD,

E Donaldson MD.

First Gobal Patient Safety

Challenge, WHO Patient Safety,

Prof D Pittet MDI: Division of

Clinical Epidemiology, University of Geneva Hospitals

and Faculty of Medicine,

Patient Safety (Infection

Control and Improving

(C Combescure PhD); Infection

Control Programme, and WHO GlaboratingCentre on

Practices), University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland

(Prof D Pittet); and National

UK(L Donaldson)

Patient SafetyAgency, London,

Geneva, Switzerland

Background Health-care-associated infection is the most frequent result of unsafe patient care worldwide, but few Loncet 2011: 377: 228-41 data are available from the developing world. We aimed to assess the epidemiology of endemic health-care-associated Published Online infection in developing countries. December 10, 2010 DOI:10.1016/S0140+

> Methods We searched electronic databases and reference lists of relevant papers for articles published 1995-2008. Studies containing full or partial data from developing countries related to infection prevalence or incidence-including overall health-care-associated infection and major infection sites, and their microbiological cause-were selected. We classified studies as low-quality or high-quality according to predefined criteria. Data were pooled for analysis.

> Findings Of 271 selected articles, 220 were included in the final analysis. Limited data were retrieved from some regions and many countries were not represented. 118 (54%) studies were low quality. In general, infection frequencies reported in high-quality studies were greater than those from low-quality studies. Prevalence of health-care-associated infection (pooled prevalence in high-quality studies, 15.5 per 100 patients [95% CI 12.6-18.9]) was much higher than proportions reported from Europe and the USA. Pooled overall health-care-associated infection density in adult intensive-care units was 47.9 per 1000 patient-days (95% Cl 36.7-59.1), at least three times as high as densities reported from the USA. Surgical-site infection was the leading infection in hospitals (pooled cumulative incidence 5-6 per 100 surgical procedures), strikingly higher than proportions recorded in developed countries. Gram-negative bacilli represented the most common nosocomial isolates. Apart from meticillin resistance, noted in 158 of 290 (54%) Staphylococcus aureus isolates (in eight studies), very few articles reported antimicrobial resistance.

> Interpretation The burden of health-care-associated infection in developing countries is high. Our findings indicate a need to improve surveillance and infection-control practices.

Correspondence to: **Prof Didler Pittet: Infection**

Funding World Health Organization.

	Number of ICUs	CR-BSI (95% CI)	Catheter-days	CR-UTI (95% CI)	Urinary catheter-days	VAP (95% CI)	Ventilator-days
Developed countries							
NNIS (1995-2003), USA*98	85-133†	5.0‡	1356 490	5.3‡	1356 490	5.8‡	115 900
NHSN (2006-2008), USA*99	89-182†	2.1‡	699 300	3.4‡	546 824	2.9‡	383 068
KISS (1997-2003), Germany ¹⁰⁰	309	1.8‡	1993541			8.0‡	1177137
KISS (2004–2009), Germany ¹⁰¹	514-583†	1.3‡	4 002 108	2.0‡	4757 133	5.1‡	2391381
Developing countries							
INICC (2002–2007), 18 developing countries*§ ⁷³	60	8.9‡	132 061	6.6‡	1030	19.8‡	1802
Argentina (1998–2004; current systematic review)®-69	15	24.7 (7.4-42.0)	9458	17-2 (13-4-21-1)	19 013	48.0 (42.0-54.0)	5777
Turkey (1999-2005; current systematic review) ^{86,8789,90}	16	11.0 (2.2–24.3)	23 503	10.8 (4.2-17.4)	36 343	26·0 (20·0–32·0)	39 504
Current systematic review (1995–2008) ^{61-63,65,6668,72-74,7879,81,83,8687,89,90}	226	11.3 (9.0–13.6)	373848	9.8 (7.7-11.8)	427 831	22.9 (19.1–26.6)	263 027

Data are overall (pooled mean) infection episodes per 1000 device-days. ICUs=intensive-care units. CR-BSI=catheter-related bloodstream infection. CR-UTI=catheter-related urinary-tract infection. VAP=ventilator-associated pneumonia. NNIS=National Nosocomial Infection Surveillance. NHSN=National Healthcare Safety Network. KISS=Krankenhaus Infektions Surveillance System. INICC=International Nosocomial Infection Control Consortium. *Medical or surgical ICUs in major teaching hospitals. †Range reported because number of ICUs included in data pooling varied according to the type of device-associated infection. ‡95% CI not reported. §Argentina, Brazil, Colombia, Costa Rica, Cuba, El Salvador, India, Kosovo, Lebanon, Macedonia, Mexico, Morocco, Nigeria, Peru, Philippines, Turkey, Uruguay.

Table 2: Comparison of device-associated infection densities in adult ICUs from developed and developing countries, 1995–2008

Bennett & Brachman's HOSPHAL H

William R. Jarvis

Fully scarchable text uvailable online

Wolters Kluwer Lippletots Williams & Wilkins

Country	Type of Study/Unit	HAI Rate (%)	Year
Albania	Adult ICUs	31.6	2008
Albania	Surgical ICUs	22.0	2008
Argentina (INICC Study)	Multicenter adult ICU	27.0	2003
Bangladesh	Adult ICUs	30	2011
Brazil	Multicenter newborn ICU	28.1	2004
Brazil	Newborn ICU	50.7	2002
Brazil(INICC Study)	Multicenter adult ICU	29.6	2006
Bulgaria	Newborn ICU	1.9	2011
Chile	Hospitalwide	14.0	2001
China	Hospitalwide	3.04	2005
China	Newborn ICU	11.6	2007
Colombia	Newborn ICU	5.3	2005
Colombia (INICC Study)	Multicenter adult ICU	12.2	2006
Costa Rica (INICC Study)	Adult ICU	4.8	2009
Croatia (INICC Study)	Adult ICU	7.0	2006
Cuba (INICC Study)	Multicenter adult ICU	22.4	2011
Egypt	Pediatrie ICU	23.0	2005
Egypt (INICC study)	Adult ICU	32.8	2012
Egypt (INICC study)	Pediatric ICU	24.5	2012
India	Pediatric ICU	19.3	2011
India (INICC Study)	Multicenter adult ICU	12.3	2005
Kosovo	Adult ICU	64.3	2008
Kosovo	Adult and New Born	17.4	2006
Kuwait	Adult MS ICU	10.6	2008
Lebanon (INICC study)	Adult ICU	9.8	2012
Macedonia (INICC study)	Adult ICU	2.1	2010

Country	Type of Study/Unit	HAI Rate (%)	Year
Mexico	Hospitalwide	21.0	2002
Mexico	Multicenter adult ICU	23.2	2000
Mexico (INICC Study)	Multicenter adult ICU	24.4	2006
Morocco (INICC Study)	Adult medical ICU	19.3	2005
Pakistan	Adult ICUs	39.7	2007
Peru (INICC Study)	Multicenter adult ICU	11.2	2005
Philippines (INICC Study)	Adult ICU	19.1	2006
Poland (INICC study)	Adult ICU	24.3	2012
Saudi Arabia	Multicenter hospitalwide	2.8	2004
Saudi Arabia	Pangal 20/ to 2	<mark>00/ ^{.0}</mark>	2002
Saudi Arabia	Frange: 2% to o	<mark>0 70</mark> 3.5	2002
Saudi Arabia	Adult ICU	19.8	2002
Saudi Arabia	Newborn ICU	35.8	2002
Serbia	Adult ICUs	40.8	2006
Tanzania	Multicenter hospitalwide	14.8	2003
Tanzania	Adult medical ICU	40.0	2003
Tunisia (INICC study)	Newborn and Pediatric	4.1	2010
Turkey	Adult ICU	12.5	2000
Turkey	Adult ICU	33.0	2003
Turkey	Adult ICU	51.8	2003
Turkey	Multicenter adult ICU	48.7	2004
Turkey	Neurology ICU	88.9	2005
Turkey	General pediatric wards	3.02	2012
Turkey	Intensive care unit	25.6	2011
Turkey	Intensive care unit	20.1	2011
Turkey	Newborn ICU	29.7	2010
Turkey	Adult ICU	16.6	2005
Turkey (INICC Study)	Multicenter adult ICU	20.5	2005
INICC 8 countries	Multicenter adult ICU	14.7	2005

Percentage of HAIs

Country	Setting	HAI per 1000 bed	Year
		days	
Argentina (INICC Study)	Multicenter adult ICU	90.0	2003
Brazil	Multicenter adult ICU	30.6	2006
Brazil	Multicenter newborn ICU	24.9	2004
Brazil	Newborn ICU	62.0	2002
China	Newborn ICU	14.9	2007
Colombia (INICC Study)	Newborn ICU	6.2	2005
Colombia (INICC Study)	Multicenter adult ICU	18.2	2006
Costa Rica (INICC Study)	Adult ICU	13.9	2009
Croatia (INICC Study)	Adult ICU	25.6	2006
Cuba (INICC Study)	Multicenter adult ICU	30.6	2011
Egy			
Egy Range: 1	<mark>11 to 90 HA</mark>	ls per 100	0 Bed days
Egypt (INICC Study)	Adult ICU	52.9	2012
Egypt (INICC Study)	Pediatric ICU	22.8	2012
India	Hospitalwide	36.2	2004
India	Pediatric ICU	21	2011

Egypt (INICC Study)	Adult ICO	52.9	2012
Egypt (INICC Study)	Pediatric ICU	22.8	2012
India	Hospitalwide	36.2	2004
India	Pediatric ICU	21	2011
India (INICC Study)	Multicenter adult ICU	21.4	2005
INICC (INICC Study)	Multicenter adult ICU	22.5	2005
Kuwait	Adult MS ICU	20.6	2008
Lebanon (INICC study)	Adult ICU	11.85	2012
Lithuania	5 Pediatric ICUs	24.5	2009
Macedonia (INICC study)	Adult ICU	4.5	2010
Mexico (INICC Study)	Multicenter adult ICU	39.0	2006
Morocco (INICC Study)	Adult medical ICU	20.4	2005
Peru (INICC Study)	Multicenter adult ICU	25.3	2005
Philippines (INICC Study)	Adult ICU	27.5	2006
Poland (INICC Study)	Adult ICU	21.9	2012
Serbia	Adult ICUs	65.6	2006
Tunisia (INICC Study)	Pediatric and Newborn	6.88	2010
Turkey	Burn ICU	18.2	2009
Turkey	General Pediatric wards	3.17	2012
Turkey	ICU	21.6	2011
Turkey	Newborn ICU	17.3	2010
Turkey	Adult ICU	30.2	2012
Turkey (INICC Study)	Multicenter adult ICU	48.4	2005
Turkey (INICC Study)	Neurology ICU	84.2	2005

Country	ІСИ Туре	CLABSI per 1000 CL days	Year
Argentina	Adult	11.4	2002
Argentina (INICC Study)	Adult	30.3	2004
Argentina (INICC Study)	Adult	2.7	2004
Brazil	NICU	17.3	2010
Brazil	PICU	10.2	2003
Brazil (INICC Study)	Adult	9.1	2008
Brazil (INICC Study)	Adult, PICU	34.0	2003
Brazil (INICC Study)	NICU	3.1	2007
China	NICU	18	2007
China (INICC Study)	Adult	3.1	2011
China (INICC Study)	Adult	7.66	2012
Colombia (INICC Study)	Adult	11.3	2006
Costa Rica (INICC Study)	Adult	4.65	2009
Croatia (INICC Study)	Adult	8.3	2006
Cuba (INICC Study)	Adult	2.0	2011
Egypt (INICC Study)	Adult	22.5	2011
Egypt (INICC Study)	PICU	18.8	2011
El Salvador (INICC Study)	PICU	10.1	2011
El Salvador (INICC Study)	NICU	16.1	2011
India	Adult, PICU, NICU	0.48	2010
India	NICU	27.0	2011
India (INICC Study)	Adult	7.9	2007
Iran	Adult	147.3	2004

Country	ІСИ Туре	CLABSI per 1000 CL days	Year
Kuwait	Adult	5.5	2008
Lebanon (INICC Study)	Adult	5.2	2011
Lithuania	PICU	7.7	2009
Macedonia (INICC Study)	Adult	1.47	2010
Mexico (INICC Study)	Adult	23.1	2006
Morocco (INICC Study)	Adult	15.7	2009
Peru	PICU	18.1	2010
Peru (INICC			
Philippines (Range: 2	to 14/ CLA	ABS per 1000 (JL days
Philippines (INICC Study)	PICU	8.23	2011
Philippines (INICC Study)	NICU	20.8	2011
Poland (INICC Study)	Adult	4.01	2011
Saudi Arabia	NICU	8.2	2009
Tunisia	Adult	15.3	2006
Tunisia	Adult	14.8	2007
Tunisia (INICC Study)	PICU, NICU	8.65	2010
Turkey	Adult	11.8	2010
Turkey	Adult	2.8	2011
Turkey	NICU	3.8	2012
Turkey (INICC Study)	Adult	17.6	2007
INICC 15 countries	NICU	13.7	2011
INICC 18 countries	Adult, PICU,	9.2	2008
INICC 18 countries	NICU	14.8	2008
INICC 25 countries	Adult, PICU,	7.6	2010
INICC 25 countries	NICU	13.9	2010
INICC 36 countries	Adult, PICU,	6.8	2011
INICC 36 countries	NICU	12.2	2011
INICC 8 countries	Adult, PICU, NICU	18.5	2006

Country	ІСИ Туре	VAP per 1000 MV days	Year
Albania	Adult, PICU, NICU	40.0	2008
Argentina (INICC Study)	Adult	46.3	2004
Brazil	NICU	3.2	2010
Brazil	PICU	18.7	2003
Brazil (INICC Study)	Adult	20.9	2008
Brazil (INICC Study)	Adult, PICU	26.0	2003
Brazil (INICC Study)	NICU	4.3	2007
China	NICU	63.3	2007
China (INICC Study)	Adult	20.8	2011
China (INICC Study)	Adult	10.46	2012
Colombia (INICC Study)	Adult	10.1	2006
Costa Rica (INICC Study)	Adult	29.9	2009
Croatia (INICC Study)	Adult	47.8	2006
Cuba (INICC Study)	Adult	52.5	2011
Egypt (INICC Study)	Adult	73.4	2011
Egypt (INICC Study)	PICU	31.8	2011
El Salvador (INICC Study)	PICU	12.1	2011
El Salvador (INICC Study)	NICU	9.9	2011
India	Adult, PICU, NICU	21.9	2010
India (INICC Study)	Adult	10.4	2007
Iran	Adult	275	2004

Country	ІСИ Туре	VAP per 1000 MV days	Year
Kuwait	Adult	9.1	2008
Lebanon (INICC Study)	Adult	8.1	2011
Lithuania	PICU	28.8	2009
Macedonia (INICC Study)	Adult	6.58	2010
Mexico (INICC Study)	Adult	21.8	2006
Morocco (INICC Study)	Adult	43.2	2009
Peru	PICU	7.9	2010
Philippines (I Range: 5	10 275 VAP p		aays _{oll}
Philippines (INICC Study)	PICU	12.8	2011
Philippines (INICC Study)	NICU	0.44	2011
Poland (INICC Study)	Adult	18.2	2011
Tunisia	Adult	4.4	2006
Tunisia (INICC Study)	PICU, NICU	5.56	2010
Turkey	Adult	27.1	2010
Turkey	Adult	21.2	2011
Turkey	NICU	13.76	2012
Turkey (INICC Study)	Adult	26.5	2007
INICC 15 countries	NICU	9.7	2011
INICC 18 countries	Adult, PICU,	19.5	2008
INICC 18 countries	NICU	7.5	2008
INICC 25 countries	Adult, PICU,	13.6	2010
INICC 25 countries	NICU	9.5	2010
INICC 36 countries	Adult, PICU,	15.8	2011
INICC 36 countries	NICU	9.0	2011
INICC 8 countries	Adult, PICU, NICU	24.1	2006

Country	ІСИ Туре	CAUTI per 1000 UC days	Year
Albania	Adult, PICU, NICU	41.0	2008
Argentina (INICC Study)	Adult	18.5	2004
Brazil	PICU	1.8	2003
Brazil (INICC Study)	Adult	9.6	2008
China (INICC Study)	Adult	6.4	2011
China (INICC Study)	Adult	1.3	2012
Colombia (INICC Study)	Adult	4.3	2006
Croatia (INICC Study)	Adult	6.0	2006
Cuba (INICC Study)	Adult	8.1	2011
Egypt (INICC Study)	Adult	34.2	2011
El Salvador (INICC Study)	PICU	5.8	2011
India	Adult, PICU, NICU	0.6	2010
India (INICC Study)	Adult	1.4	2007
Iran	Adult	137.5	2004

Country	ІСИ Туре	CAUTI per 1000 UC davs	Year
Kuwait	Adult	2.3	2008
Lebanon (INICC Study)	Adult	4.1	2011
Lithuania	PICU	3.4	2009
Macedonia (INICC Study)	Adult	0.45	2010
Mexico (INICC Study)	Adult	13.4	2006
Morocco (INTERACIÓN) Peru Range: O	<mark>.1 to 137 C/</mark>	AUTI per 1000	UC days
Peru (INICC Study)	Adult	5.1	2008
Philippines (INICC Study)	Adult	4.2	2011
Philippines (INICC Study)	PICU	0.0	2011
Poland (INICC Study)	Adult	4.8	2011
Tunisia (INICC Study)	PICU, NICU	0.0	2010
Turkey	Adult	9.6	2010
Turkey	Adult	11.9	2011
Turkey	Adult	19.02	2012
Turkey (INICC Study)	Adult	8.3	2007
INICC 18 countries	Adult, PICU,	6.5	2008
INICC 25 countries	Adult, PICU,	6.3	2010
INICC 36 countries	Adult, PICU,	6.3	2011
INICC 8 countries	Adult, PICU, NICU	8.9	2006

Pediatr Crit Care Med 2012 Vol. 13, No. 4

balts/ske-poo/ske-poo/skesses11/skesses11/skesses112 wasilk S=3 11/10/11 15:15 Art: 201074 Input-In

Socioeconomic impact on device-associated infections in pediatric intensive care units of 16 limited-resource countries: International Nosocomial Infection Control Consortium findings

Victor D. Rosenthal, MD, MSc, CiC; William R. Jarvis; Silom Jamuiltrat; Cristiane Pavanello Rodrigues Silva; Bala Ramachandran; Lourdes Dueñas; Valdotas Gurskis; Guiden Ersoz; María Guadalupe Miranda Novales; liham Abu Khader; Khaidi Ammar; Nayide Barahona Guzmán; Josephine Anne Navoa-Ng; Zeinab Salah Sellem; Teodora Atencio Espinoza; Cheong Yuet Meng; Kushlani Jayatilieke; international Nosocomial Infection Control Members

> Infection (2011) 39:439-450 DOI 10.1007/s15010-011-0136-2

CLINICAL AND EPIDEMIOLOGICAL STUDY

Socioeconomic impact on device-associated infections in limited-resource neonatal intensive care units: findings of the INICC

V. D. Rosenthal · P. Lynch · W. R. Jarvis · I. A. Khader · R. Richtmann · N. B. Jaballah · C. Aygun · W. Villamil-Gómez · L. Dueñas · T. Atencio-Espinoza · J. A. Navoa-Ng · M. Pawar · M. Sobreyra-Oropeza · A. Barkat · N. Mejía · C. Yuet-Meng · A. Apisarnthanarak · INICC members

World Bank classification of Countries Economic Strata. According to 2011 gross national income (GNI) per capita.

- The World Bank classifies countries into four economic strata according to 2011 gross national income (GNI) per capita.
- These groups are:
 - low income, \$1,025 or less;
 - lower middle income, \$1,026–4,035;
 - upper middle income, \$4,036–12,475;
 - high income, \$12,476 or more.
 - These economies represent 144 of 209 countries of the world (68.8%) and more than 75% of the world population.
- There is very limited information regarding association between socio economic level of the country (Low income, mid low income, and mid high income) and DAI rates, as well as association between type of hospital (Public, Academic, and Private) and DAI rates.
- The goal of this study is to show DAIs rates stratified by socio economic level of the country and type of hospital and to find statistical associations among them.

CLAB Rates Stratified Socio-Economic Level

Rosenthal VD, et al. Pediatric Critical Care 2012. Infection 2012.

CLAB Rates Stratified By Hospital Type

NIC

Rosenthal VD, et al. Pediatric Critical Care 2012. Infection 2012.

VAP Rates Stratified By Hospital Type

NIC

Rosenthal VD, et al. Pediatric Critical Care 2012. Infection 2012.

INICC International Nosocomial Infection Control Consortium

1000 Hospitals of 200 CITIES of 54 COUNTRIES of 4 CONTINENTS

List of 54 countries participating in INICC

Latin America		Eu	Europe		Asia		África	
1.	Argentina	1.	Bulgaria	1.	China	1.	Botswana	
2.	Bolivia	2.	Cyprus	2.	India	2.	Egypt	
3.	Brazil	3.	Czech Republic	З.	Indonesia	З.	Morocco	
4.	Chile	4.	Greece	4.	Jordan	4.	Niger	
5.	Colombia	5.	Kosovo	5.	Kuwait	5.	Tunisia	
6.	Costa Rica	6.	Lithuania	6.	Lebanon	6.	Sudan	
7.	Cuba	7.	Macedonia	7.	Malaysia			
8.	Dominican Republic	8.	Poland	8.	Mongolia			
9.	Ecuador	9.	Romania	9.	Pakistan			
10.	El Salvador	10.	Serbia	10.	Philippines			
11.	Guatemala.	11.	Slovakia	11.	Singapore			
12.	Honduras	12.	Turkey	12.	Sri Lanka			
13.	México	13.	Ukraine	13.	Saudi Arabia			
14.	Panamá			14.	Taiwan			
15.	Peru			15.	Thailand			
16.	Puerto Rico			16.	United Arab Emirates			
17.	Venezuela			17.	Vietnam			

18. Uruguay

Papers published by INICC by specific Country of Latin America

Device-associated nosocomial in rates in intensive care units in Mexican public hospitals

Ector Jaime Ramirez Barba,⁸ Victor Daniel Rosenthal,^b Francisco Higuera,^c Martha Sobreyra Oropeza,^d Nector Torres Hernández,^e Martha Sánchez López,^f Elia Lara Lona,^a Pablo Duarte,^b Javier Ruiz,¹ Raul Rojas Hernandez,* Amalia Chavez,* Irma Perez Cerrato,* Gloria Elena Ramirez Ramirez,* and Nasia Safdar⁸

México City and Guanajuato, Mexico; Buenos Aires, Argentina; and Madison, Wisconsin

Background: Routine surveillance of nosocomial infections has become an integral part of infection control and quality assurance in US hospitals.

Methods: As part of the International Nosocomial Infection Control Consortium, we performed a prospective nosocomial infection surveillance cohort study in 5 adult intensive care units of 4 Mexican public hospitals using the Centers for Disease Control and Prevention National Nosocomial Infections Surveillance system definitions. Site-specific nosocomial infection rates were calculated.

Results: The overall nosocomial infection rate was 24.4% (25311055) and 39.0 (25316590) per 1000 patient days. The most common infection was catheter-associated bloodstream infection, 57.98% (149/257), followed by ventilator-associated pneumonia, 20.23% (52/257), and catheter-associated urinary tract infection, 21.79% (56/257). The overall rate of catheter-associated bloodstream infections was 25.1 per 1000 device-days (14%6450); ventilator-associated pneumonia rate was 21.8 per 1000 device-days (52/2390); and catheter-associated urinary tract infection rate was 13.4 per 1000 device-days (56/4184)

Conclusion: Our rates are similar to other hospitals of Latin America and higher than US hospitals. (Am J Infect Control 2005.

Investigación original / Original research

Device-associated infection rates in intensive care units of Brazilian hospitals: findings of the International Nosocomial Infection Control Consortium

Reinaldo Salomao,¹ Victor D. Rosenthal,² Gorki Grimberg,³ Simone Nouer,⁴ Sergio Blecher,¹ Silvia Buchner-Ferreira,² Rosa Vianna,⁴ and Maria Ângela Maretti-da-Silva¹

> Suggested citation Salomao R, Rosenthal VD, Grimberg G, Nouer S, Blecher S, Buchner-Ferreira S, et al. Device-associated infection rates in intensive care units of Brazilian hospitals: findings of the International Nosocomial Infection Control Consortium. Rev Panam Salud Publica. 2008;24(3):195-202.

Original Article

Device-associated infection rates in intensive care units in El Salvador: International Nosocomial Infection Control Consortium (INICC) Findings

Lourdes Dueñas¹, Ana C. Bran de Casares¹, Victor D. Rosenthal², Lilian Jesús Machuca¹

¹Hospital Nacional de Niños Benjamin Bloom, San Salvador, El Salvador ²International Nosocomial Infection Control Consortium, Buenos Aires, Argentina

Abstract

Introduction: This study aimed to determine the rate of device-associated, health care-associated infection (DA-HAI), the excess in length of stay, the mortality, and the hand hygiene compliance in a pediatric intensive care unit (PICU) and a neonatal ICU (NICU) in a hospital member of the International Infection Control Consortium (INICC) in El Salvador.

Methodology: A prospective cohort, active DA-HAI surveillance study was conducted on patients admitted in the pediatric and neonatal ICUs from January 2007 to November 2009. The protocol and methodology implemented were developed by INICC. Data were collected in the participating ICUs, and analyzed at INICC headquarters by proprietary software. DA-HAI rates were recorded by applying the definitions of the Centers for Disease Control and Prevention National Healthcare Safety Network.

Results: Of 1,145 patients hospitalized in the PICU for 9,517 days, 177 acquired DA-HAIs (overall rate 15.5%), and 18.6 DA-HAIs per 1,000 ICU-days. Furthermore, 1,270 patients hospitalized in the NICU for 30,663 days acquired 302 DA-HAIs (overall rate 23.8%), and 9.8 DA-HAIs per 1,000 ICU-days. The central line-associated bloodstream infection (CLA-BSI) rates in the NICU and PICU were 9.9 and 10.0 per 1,000 catheter-days respectively. The ventilator-associated pneumonia (VAP) rate was 16.1 per 1,000 ventilator-days in the NICU and 12.1 in the PICU. The catheter-associated urinary tract infection (CAUTI) rate was 5.8 per 1,000 catheter-days in the PICU.

Conclusions: DA-HAI rates in the PICU and NICU of our hospital were higher than international standards; infection control programs

INFORMATION AND HOMPTON EPIDMODUCSTY

ABSTRACT BACKGHOLND: Description infections are an important

public South problem in enery developing reservices particularly in the mounter care and (CO) welling his previous data are

restably on its mathems of device one chief assessmith inte-tions in damont types of XCA to Argunitan METHODS We preformed a group-time assessmith interfers versioned sindy during the first year (it as interfers

authol resources in six Accessions, ETA, Measureed infections,

were Meallier using the Centers for Disease Doubyl and Provention dialogal formaterial Methods Serverland System

induktions, tike viewpeckle, and constant kates/from vites verify call-

8-9

to me of alleler-associated the movies i-segural IEA sec. It is per Life instru-

DEVICE-ASSOCIATED NOSOCOMIAL INFECT IN INTENSIVE CARE UNITS OF ARGENTINA

Vistor Doort Rocema, MD 2000 Instructionade. Phy. 3rth Deperptor Track Auto-

evice-Associated Infection Rate and Mortalit

Units of 9 Colombian Hospitals: Findings of the International Nosocomial Infection Control Consortium

Carlos Alvarez Moreno, MD, Victor D, Rosenthal, MD; Nauda Olarto, MD; Wilmer Villamil Go Otto Sustanana, MD: Inlio Garzen Agadelo, MD: Cathenine Rojas, MD: Laline Ovorio, EN: Claudia Linares, RN: Alberto Valdersama, RN: Patricia Garrido Mestado, MD; Patrick Hernats Arrieta Bernate, MD. Gaillermo Raiz Vergara, MD: Alberto Marrugo Pertuz, MD: Beatriz Eugenia Mojica, EN: Maria del Filar Torres Navarrete, RN; Ana Sefla Alonso Romero, MD; Duibeth Heuriquez, MD

onynetters. To perform active targeted prospective surveillance to manuse device-associated infection (DAI) rates, attributable mortal dae to DAL and the microbiological and ambiooic assistance profiles of infecting pathogans at 10 intensive care units (DCU-) in 9 hospits in Cohenhia, all of which are members of the International Infection Control Connections

sections. We conducted prospective convoltance of healthcare-associated infection in 9 hospitals by using the definitions of the U Centre for Discase Control and Prevention National Noncomial Surveillance System (NMS), DM rates were calculated as the name of infections per 100 ECU patients and per 1,000 device-dam.

servers. During the 3-year study, 2372 patients hospitulized in an ICU for an aggregate duration of 16,600 days acquired 266 DMa, I overall DAI rate of 122%, or 18.2 DAIs per 1.000 patient-days. Gentral versous cathetar (CVC)-edited Mooderman infection (B GF/4% of DAIs; 11.3 cases per 1,000 enthetur-dursi was the most common DAL followed by ventilator-associated pneumonia-(VAP) (32.5 of DMbs 10.0 cases per 1.000 versifiator deep) and calibrier neuclated orinary trust indiction. SCAUTI (20.Ph of DMbs 4.3 cases per 1.00 calibrar-dep). Ownill, 65.4% of all Stephylicocco neuron infections were caused by methicillin-resistant enzine, 40.9% of Entersharberlace indexes were resistant to orbitations and 30.9% were resistant to orbitalize and 40.0% of Pendemona arrachese indutes were teste to flavorapitolines, 50.0% were residual to criticalize, 33.9% were resistant to pipesa-filterizaohartan, and 200% were resistant impresen. The crade sandported attributed in mertality was 16.9% samong patients with VAP (adative risk [RB], 1.8% 0%) confider interval [CI], 1.24-5.09; F = .002); 10.5 among those with CVC-associated BSI (80, 2.02; 95%-CI, 1.42-2.07; P-c.001); and 10.5% among these with CAUTI (RR, 138, 99% CI, 0.78-5.18; P = 39).

constructions. The rates of D43 in the Colombian ICUs were lower than those published in some reports from other Latin / countries and wave higher than those reported in US ICUs by the NNIS. These data show the need for more-effective infection cost entions in Colombia.

100.0

Contents lists available at ScienceDirect International Journal of Infectious Diseases

journal homepage: www.elsevier.com/locate/ijid

Device-associated infection rates in adult intensive care units of Cuban university hospitals: International Nosocomial Infection Control Consortium (INICC) findings

H. Guanche-Garcell^a, O. Requejo-Pino^b, V.D. Rosenthal^{c,*}, C. Morales-Pérez^a, O. Delgado-González^b, D. Fernández-González^b

^a Joaquín Albarrán Domínguez Surgical Training Hospital, Havana, Cuba ⁹Gral. Calixto García University Hospital, Havana, Cuba International Nosocomial Infection Control Consortium, Buenos Aires, Argentina

days: 3 was 14.2 per 1/00 divice days in miniage cars - ands

(CCOs). The calls of restlicite monthled proximities in met-ical-singlical liftle was efficient 1/00 desire-days 0 was \$55 per

1/00 design-sizes in 12/2%. The case of employeesic calinder

socialed enany trad advised as ended and painting or

CONCLEMENT: The high cite of economial university

tAl per L/M device-days. Il van 12.1 per L/M device-days in

in Argentisem (CI): loand during our surveiliner suggest) this

coping targeted waveflaw," and tappersectation of protec-tation course ordering to protect to tryptique protection

such in Argentian (http://torana/Mosp.3656estar/201825/251

Investigación original / Original research

Device-associated infection rates and mortality in intensive care units of Peruvian hospitals: findings of the International Nosocomial Infection Control Consortium

Luis E. Cuellar,¹ Eduardo Fernandez-Maldonado,² Victor D. Rosenthal,³ Alex Castaneda-Sabogal,⁴ Rosa Rosales,¹ Manuel J. Mayorga-Espichan,² Luis A. Camacho-Cosavalente.³ and Luis I. Castillo-Bravo¹

Suggested citation

Cuellar LE, Fernandez-Maldonado E, Rosenthal VD, Castaneda-Sabogal A, Rosales R, Mavorga-Espichan MJ, et al. Device-associated infection rates and mortality in intensive care units of Peruvian hospitals: findings of the International Nosocomial Infection Control Consortium. Rev Panam Salud Publica. 2008;24(1):16-24.

Papers published by INICC by specific Country of Europe, Asia and Africa

Device-associated infections rate adult, pediatric, and neonatal inta care units of hospitals in the Philippines: International Nosocomial Infection Control Consortium (INICC) findings

J. A. Navoa-Ng." R. Berba," Y. Arreza Galapia," Victor Daniel Rosenthal, " V. D. Villanueva," M. Corazon V. Tolentino," G. A. Genuino, b R. J. Consunji, b and J. B. V. Mantaring III Quezon City and Manila, Philippines and Buenos Aires, Argentina

Lebanese University Hospital

Background: This study investigated the rate of device-associated health care-associated infection (DA-HAI), microbiological profiles, bacterial resistance, length of stay (LOS), and mortality rate in 9 intensive care units (ICLs) of 3 hospital members of the international Nosocomial Infection Control Consortium (NICC) in the Philippines

Methods: This was an open-label, prospective cohort, active DAHAI surveillance study of adult, pediatric, and newborn patients admitted to 9 tertiary care ICUs in the Philippines between January 2005 and December 2009, implementing methodology developed by the INICC. Data collection was performed in the participating KUs, and data were uploaded and analyzed at the INICC headquarters using proprietary software. DA-HAI rates were registered based on definitions promulgated by the Centers for Disease Control and Prevention's National Healthcare Safety Network.

Results: Over a 5-year period, 4952 patients hospitalized in ICUs for a total of 40,733 days acquired 199 DA-HAIs, for an overall rate of 4.9 infections per 1000 KU-days. Ventilator-associated pneumonia posed the greatest risk (16.7 per 1000 ventilator-days in the adult ICUs, 12.8 per 1000 ventilator-days in the pediatric ICU, and 0.44 per 1000 ventilator-days in the neonatal ICUs) followed by central line-associated bloodstream infections (4.6 per 1000 catheter-days in the adult ICUs, 8.23 per 1000 ventilator-days in the pediatric ICU, and 9.6 per 1000 ventilator-days in the neonatal ICUs) and catheter-associated urinary tract infections (4.2 per 1000 catheter-days in the adult ICUs and 0.0 in the pediatric ICU).

Conclusion: DVHAIs pose far greater threats to patient safety in Philippine ICUs than in US ICUs. The establishment of active infection control programs that involve infection surveillance and implement guidelines for prevention can improve patient safety and should become a priority.

Rey Words: International Nosocomial Infection Control Consortium, hospital Infection, nosocomial Infection, health careacquired infection; central line-associated bloodstream infection; bloodstream infection; bacteremia; ventilator-associated pneumonia hospital-acquired oneumonia catheter-associated urinary tract infection, developing country, limited-resource country, low-income country, intensive care unit, critical care, infection control, surveillance, incidence density, length of say, monality, microorganism profile, bacterial resistance.

Copyright @ 2011 by the Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved. (Am J Infect Control 2011,#1+7.)

Int J Infect Dis. 2011 Aug 14. [Epub ahead of print]

Device-associated infection rates in 398 intensive care units in Shangl International Nosocomial Infection Control Consortium (INICC) finding

Tao L, Hu B, Rosenthal VD, Gao X, He L. Department of Respiratory Medicine, Huadong Hospital, Fudan University, Shanghai, China.

ORIGINAL ARTICLE

Abstract

OBJECTIVES: To determine device-associated healthcare-associated infection (DA-HAI) rates and the microorganism profile in 398 intensive care units (ICUs) of 70 hospitals in Shanghai, China.

METHODS: An open-label, prospective, cohort, active DA-HAI surveillance study was conducted on patients admitted to 398 tertiary-care ICUs in China from September 2004 to December 2009, implementing the methodology developed by the International Nosocomial Infection Control Consortium (INICC). The data were collected in the participating ICUs, and uploaded and analyzed at the INICC headquarters on proprietary software. DA-HAI rates were registered by applying the definitions of the US Centers for Disease Control and Prevention (CDC) National Healthcare Safety Network (NHSN). We analyzed the rates of DAI-HAI, ventilator-associated pneumonia (VAP), central line-associated bloodstream infection (CLABSI), and catheter-associated urinary tract infection (CAUTI), and their microorganism profiles.

RESULTS: During the 5 years and 4 months of the study, 391 527 patients hospitalized in an ICU for an aggregate of 3 245 244 days, acquired 20 866 DA-HAIs, an overall rate of 5.3% (95% confidence interval (CI) 5.3-5.4) and 6.4 (95% CI 6.3-6.5) infections per 1000 ICU-days. VAP posed the greatest risk (20.8 per 1000 ventilator-days, 95% CI 20.4-21.1), followed by CAUTI (6.4 per 1000 catheter-days, 95% CI 6.3-6.6) and CLABSI (3.1 per 1000 catheter-days, 95% CI 3.0-3.2). The most common isolated microorganism was Acinetobacter baumannii (19.1%), followed by Pseudomonas aeruginosa (17.2%), Klebsiella pneumoniae (11.9%), and Staphylococcus aureus (11.9%).

CONCLUSIONS: DA-HAIs in the ICUs of Shanghai pose a far greater threat to patient safety than in ICUs in the USA. This is particularly the case for the VAP rate, which is much higher than the rates found in developed countries. Active infection control programs that carry out infection surveillance and implement prevention guidelines can improve patient safety and must become a priority.

Copyright © 2011 International Society for Infectious Diseases, Published by Elsevier Ltd, All rights reserved.

International Archives of Medicine

Original research

Health-care associated infections rates, length of stay, and bacterial resistance in an intensive care unit of Morocco: Findings of the International Nosocomial Infection Control Consortium (INICC) Naoufel Madani¹, Victor D Rosenthal², Tarek Dendane¹, Khalid Abidi¹, Amine Ali Zeggwagh^{1,3} and Redouane Abougal^{+1,3}

Address - The State Haspitel-Medical (CL), Raber, Morocce, Readical College of Research/Ites, Reintoshites, Argemins and Reboratory of Rosserier de Clindel and Roldemiological Research, Realing de Médeologies de Pharmadie, Rabar, Monorce, Baalit Kanufel Madani - monfe had genalizony Moor D. Roembal - vinor, roemba ginacong Tarek Bandane - nieniane ginamali.com Xalid Ahid - ahid kinalig invivorado Amine Ali Zegeregh - saargeregh gineivo, ado; Badonne Ahosipi - - shoupi gineivorada; · Corresponding and an evaluation

Journal of Hospital Infection (2006) . 1-7

(ospital infection (2007) 57, 168-174

Available online at www.iiciencedirort.com

ce-associated nosocomial infection rates

tensive care units of seven Indian cities.

ings of the International Nosocomial

ita ", V.D. Rosenthal b.*, Y. Mehta ", M. Chakravarthy d,

oor", V. Jawali", P. Chakraborty", J.P. Raj , D. Bindhani .

odi", N. Sen', S. Sahu[#], R. Gopinath^b, C. Rodrigues^a,

indra h, A. Hegde ", M. Pawar , N. Venkatachalam d,

tion Control Consortium (INICC)

tterjee", N. Trehan", T. Singhal", N. Damani

luja National Hospital & Medical Research Centre, Mumbal, India

m Area Hospical, Department of Microbiology, N. Irelant, UK

College of Buenas Aires, Buenos Aires, Argentina

rdt Hospital & Heart Institute, Bangalore, India

Institute of Medical Sciences, Hyderabad, India

ospitals, Kolkata, India

n Medical College, Vellare, India

7 February 2007; accepted 13 July 2007

Open Acc

Hospital, Bhubaneswar, India

Heart Institute & Research Centre, New Delhi, India

ScienceDirect

Reinbach 7 Oceber 2009 Received: Accepted. Instructional Andre and Marian #2009, 229 doc 01 84/ 755-7682-2-29 This and de is as lable if om these liveway incardy read considences (2/1/19 This 5 at Open Access article detribucedurider the terms of the Creatile Commons Actri-whith permits unnetriced use detribuced, and reproduction in any medium, provided the ELSEVIER

Background: Most studies related to healthcare-associated infection (HA solight to determine healthcare-associated infection rates microbiobelosi o extra montality in one CU of a hospital member of the international infect Methods: We conducted prospective surveillance from 11/2004 to 4/200 vacular catheter-associated bloodstream infection (CVC-85), catheter ventiator-associated preumone (VAP), CDC-NNS definitions were applie the total number of device-days by the total number of patient-days Rates were calculated by dividing the total number of HAI by the total number of

vacocci ware methicillin resistant as well, 75.0% of Kebasilo were resis of E. Coll were resistant to ceforiaxon's and 21.7% to ceftasi dime. 68.4% of 1

Bers mortality was 56.7% (RR, 3.28, P =< 0.001) for VAP, 75.1% (RR, 4.02)

Conclusion: HAI rates, LOS, montality, and bacterial resistance were high setting of the country, programs including surveillance, infection control, ar

^e Akdeniz University, Antalya, Turkey

Karadeniz Technical University School of Medicine, Trabzon, Turkey * Osmanganzi University, Eskisehir, Turkey h Hacettepe University School of Medicine, Ankara, Turkey

sliege of Buenos Aires, Intection Control, Lavalleja 205, Poor 9, Apt A, 1414 Buenos

aphtal Intection Society, Published by Eservier Ltd. All rights reserved.

Device-associated hospital-acquired infections

rates in intensive care units of 12 Turkish

hospitals. Findings of the International

 (\mathbf{O})

E 209 Madan les si jidenses SioMed Centra Ltd.

Infections (CAUTI) hats found was 11.7 per 1.000 catheter-days.

0.02 (8) 6r CAUTI

IDS of patents was 5.1 days for these webout HAL 9.0 days for these we * Ondokuz MayIs University Medical School, Samsun, Turkey ^b Medical College of Buenos Aires, Buenos Aires, Argentina ⁶ Ankara University School of Medicine, Ibni Sina Hospital, Ankara, Turkey

16

^d Haydarpasa Hospital, Istanbul, Turkey

Ege University Medical Faculty, Izmir, Turkey

Received 7 December 2005; accepted 18 October 2005

Consortium's (INICC) findings Andizej Kübler^e, Wieslawa Duszynska^e, Victor D Rosenthal ^{b,*}, Malgorzata Fleischer^e, Teresa Kaiser^e, Ewa Szewczyk^e, Barbara Barteczko-Grajek^e

Poland: International Nosocomial Infection Control

*Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Wroclaw, Poland International Nosocorrial Infection Control Consortium, Buenos Aires, Argentina

Kani SS. Kanafani ZA. Sidani N. Alamuddin L. Zahreddine N. Rosenthal VD¹

Faculty of Medicine, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon, ¹International Nosocomial Infection Control Consortium, Buenos Aires, Argentina, Avenida Corrientes 4580, Piso 12, Dpto "D", Buenos Aires (C1195AAR), Argentina

International Nosocomial Infection Control Consortium Findings

of Device-Associated Infections Rate in an Intensive Care Unit of a

ABSTRACT

Objectives: To determine the rates of device-associated healthcare-associated infections (DA-HAI), microbiological profile, bacterial resistance, length of stay (LOS), excess mortality and hand hygiene compliance in one intensive care unit (ICU) of a hospital member of the International Infection Control Consortium (INICC) in Beirut, Lebanon. Materials and Methods: An open label, prospective cohort, active DA-HAI surveillance study was conducted on adults admitted to a tertiary-care ICU in Lebanon from November 2007 to March 2010. The protocol and methodology implemented were developed by INICC. Data collection Journal of Critical Care (2011) xx, xxx-xxx NICC headquarters on proprietary

Journal of Safety Network (NHSN) at the US Critical Care I ventilator-associated pneumonia inary tract infection (CAUTI) rates, : A total of 666 patients hospitalized -12.3], and 11.8 (95% CI 9.1-15.0) r-days; the VAP rate was 8.1 (95% 000 catheter-days, LOS of patients se with VAP. Excess mortality was significantly different from patients Device-associated infection rates and extra length of stay in nd hygiene compliance was 84.9% an intensive care unit of a university hospital in Wroclaw.

nfection, ventilator associated

tium

ere moderately high, below INICC and antibiotic policies are essential

Abstract

Nosocomial Infection Control Consortium (INICC) Results 1731 contacts branitalized for 11/297 days acculred 251 HAIs, and days. The central versus catheter-related bloodstream infections (CVC-85 ventilator-associated preumona (VAP) rate found was 43.2 per 1,000 ventil H. Leblebicioglu^a, V.D. Rosenthal^{b,*}, Ö.A. Arıkan^c, A. Özgültekin^d,

A.N. Yalcin^e, I. Koksal^f, G. Usluer^g, Y.C. Sardan^h, S. Ulusoy¹, Overall 25.5% of all Stephysicoccus cursus HAIs were caused by methic the Turkish Branch of INICC¹

to cellosidime and ION to imperent 35.6% of Paulduments ap were resist
Four INICC Annual Reports

Contents lists available at ScienceDirect

American Journal of Infection Control

journal homepage: www.ajicjournal.org

Special communication

International Nosocomial Infection Control Consortium (INICC) report, data summary of 36 countries, for 2004–2009

Victor D. Rosenthal MD, MSc, CIC^{a,*}, Hu Bijie^b, Dennis G. Maki^c, Yatin Mehta^d, Anucha Apisarnthanarak^e, Eduardo A. Medeiros^f, Hakan Leblebicioglu^g, Dale Fisher^h, Carlos Álvarez-Morenoⁱ, Ilham Abu Khader^j, Marisela Del Rocío González Martínez^k, Luis E. Cuellar¹, Josephine Anne Navoa-Ng^m, Rédouane Abouqalⁿ, Humberto Guanche Garcell^o, Zan Mitrev^p, María Catalina Pirez García^q, Asma Hamdi^r, Lourdes Dueñas^s, Elsie Cancel^t, Vaidotas Gurskis^u, Ossama Rasslan^v, Altaf Ahmed^w, Souha S. Kanj^x, Olber Chavarría Ugalde^y, Trudell Mapp^z, Lul Raka^{aa}, Cheong Yuet Meng^{bb}, Le Thi Anh Thu^{cc}, Sameeh Ghazal^{dd}, Achilleas Gikas^{ee}, Leonardo Pazmiño Narváez^{ff}, Nepomuceno Mejía^{gg}, Nassya Hadjieva^{hh}, May Osman Gamar Elanbyaⁱⁱ, María Eugenia Guzmán Siritt^{jj}, Kushlani Jayatilleke^{kk}

Rosenthal, V. D., H. Bijie, et al. (2012). "International Nosocomial Infection Control Consortium (INICC) report, data summary of 36 countries, for 2004-2009." <u>American journal of infection control 40(5): 396-407.</u>

INICC report – 36 countries- "2004 to 2009".

- Period: January 2004 to December 2009 (6 years)
- Countries: 36 (Argentina, Brazil, Bulgaria, China, Colombia, Costa Rica, Cuba, Dominican Republic, Ecuador, Egypt, Greece, India, Jordan, Kosovo, Lebanon, Lithuania, Macedonia, Malaysia, Mexico, Morocco, Pakistan, Panama, Peru, Philippines, Puerto Rico, El Salvador, Saudi Arabia, Singapore, Sri Lanka, Sudan, Thailand, Tunisia, Turkey, Venezuela, Vietnam, Uruguay)
- ICUs: 422
- Patients: 313,008
- Bed days: 2,194,897
- Central Line days: 1,078,448
- Ventilator days: 796,847
- Urinary catheter days: 1,049,541
- **–** BSI (n): 7,603
- VAP (n): 12,395
- CAUTI (n): 6,595
- Total IAD: 26,593

Rosenthal, V. D., H. Bijie, et al. (2012). "International Nosocomial Infection Control Consortium (INICC) report, data summary of 36 countries, for 2004-2009." <u>American</u> journal of infection control 40(5): 396-407

HAI rates INICC vs CDC-NHSN (USA)

	INICC 2004–2009 Pooled Mean (95% CI)	U.S. NHSN 2006-2008 Pooled Mean (95% CI)
Medical Cardiac ICU		
CLAB	6.2 (5.6 – 6.9)	2.0 (1.8 – 2.1)
CAUTI	3.7 (3.2 – 4.3)	4.8 (4.6 – 5.1)
VAP	10.8 (9.5 – 12.3)	2.1 (1.9 – 2.3)
Medical-surgical ICU		
CLAB	6.8 (6.6 – 7.1)	1.5 (1.4 – 1.6)
CAUTI	7.1 (6.9 – 7.4)	3.1 (3.0 – 3.3)
VAP	18.4 (17.9 – 18.8)	1.9 (1.8 – 2.1)
Pediatric ICU		
CLAB	4.6 (3.7 – 5.6)	3.0 (2.7 – 3.1)
CAUTI	4.7 (4.1 – 5.5)	4.2 (3.8 – 4.7)
VAP	6.5 (5.9 – 7.1)	1.8 (1.6 – 2.1)
Newborn ICU		
CLAB	11.9 (10.2 – 13.9)	1.5 (1.2 – 1.9)
VAP	10.1 (7.9 – 12.8)	0.8 (0.04 – 1.5)

Rosenthal, V. D., H. Bijie, et al. (2012). "International Nosocomial Infection Control Consortium (INICC) report, data summary of 36 countries, for 2004-2009." <u>American journal of infection control 40(5): 396-407</u>

W Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis

Benedetta A llegranzi, Sepideh Bagheri Nejad, Christophe Combescure, Wilco Graafmans, Homa Attar, Liam Donaldson, Didier Pittet

Summary

Loncet 2011; 377: 228-41 Published Online December 10, 2010 DOI:10.1015/S0140-Background Health-care-associated infection is the most frequent result of unsafe patient care worldwide, but few data are available from the developing world. We aimed to assess the epidemiology of endemic health-care-associated infection in developing countries.

> Methods We searched electronic databases and reference lists of relevant papers for articles published 1995-2008. Studies containing full or partial data from developing countries related to infection prevalence or incidence—including overall health-care-associated infection and major infection sites, and their microbiological cause—were selected. We classified studies as low-quality or high-quality according to predefined criteria. Data were pooled for analysis.

> Findings Of 271 selected articles, 220 were included in the final analysis. Limited data were retrieved from some regions and many countries were not represented. 118 (54%) studies were low quality. In general, infection frequencies reported in high-quality studies were greater than those from low-quality studies. Prevalence of health-care-associated infection (pooled prevalence in high-quality studies, 15 · 5 per 100 patients [95% CI 12 · 6–18 · 9]) was much higher than proportions reported from Europe and the USA. Pooled overall health-care-associated infection density in adult intensive-care units was 47 · 9 per 1000 patient-days (95% CI 36 · 7–59 · 1), at least three times as high as densities reported from the USA. Surgical-site infection was the leading infection in hospitals (pooled cumulative incidence 5 · 6 per 100 surgical procedures), strikingly higher than proportions recorded in developed countries. Gram-negative bacilli represented the most common nosocomial isolates. Apart from meticillin resistance, noted in 158 of 290 (54%) *Staphylococcus aureus* isolates (in eight studies), very few articles reported antimicrobial resistance.

Interpretation The burden of health-care-associated infection in developing countries is high. Our findings indicate a need to improve surveillance and infection-control practices.

Correspondence to: Funding World H

Funding World Health Organization.

Rof Didler Pittet: Infection

UK(L Donaldson)

(Prof D Pittet); and National

Patient SafetyAgency, London,

6736(10)61458-4

See Commentpage 186

Geneva, Switzerland

(B Allegranzi M.D., S Bagheri Nejad M.D., W Graafmans PhD, HAttar PhD.

E Donaldson MD.

First Gobal Patient Safety

Challenge, WHO Patient Safety,

Prof D Pittet MD's Division of

Clinical Epidemiology, University of Geneva Hospitals

and Faculty of Medicine,

Patient Safety (Infection

Control and Improving

(C Combescure PhD); Infection

Control Programme, and WHO CollaboratingCentre on

Practices), University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland

Geneva, Switzerland

The burden of endemic health care-associated infection in low- and middle-income countries

Lancet 2011; 377: 228-41

INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY JUNE 2013, VOL. 34, NO. 6

ORIGINAL ARTICLE

Surgical Site Infections, International Nosocomial Infection Control Consortium Report, Data Summary of 30 Countries, 2005–2010

Victor D. Rosenthal, MD;¹ Rosana Richtmann, MD;² Sanjeev Singh, MD;³ Anucha Apisarnthanarak, MD;⁴
Andrzej Kübler, MD;⁵ Nguyen Viet-Hung, MD;⁶ Fernando M. Ramírez-Wong, MD;⁷ Jorge H. Portillo-Gallo, MD;⁸
Jessica Toscani, MD;⁹ Achilleas Gikas, MD;¹⁰ Lourdes Dueñas, MD;¹¹ Amani El-Kholy, MD;¹² Sameeh Ghazal, MD;¹³
Dale Fisher, MD;¹⁴ Zan Mitrev, MD;¹⁵ May Osman Gamar-Elanbya, MD;^{16,17} Souha S. Kanj, MD;¹⁸
Yolanda Arreza-Galapia, MD;¹⁹ Hakan Leblebicioglu, MD;²⁰ Soňa Hlinková, MD;^{21,22} Badaruddin A. Memon, MD;²³
Humberto Guanche-Garcell, MD;²⁴ Vaidotas Gurskis, MD;²⁵ Carlos Álvarez-Moreno, MD;²⁶ Amina Barkat, MD;²⁷
Nepomuceno Mejía, MD;²⁸ Magda Rojas-Bonilla, MD;²⁹ Goran Ristic, MD;³⁰ Lul Raka, MD;³¹ Cheong Yuet-Meng, MD³²

- The collected data amounted to 260,973 surgical procedures.
- Most of INICC SSI rates were 2 to 5 times statistically significantly higher in international hospitals than in USA (CDC) report, such as the following:

AAA: Abdominal Aortic Aneurysm Repair AMP: Limb Amputation APPY: Appendectomy BILI: Bile duct, liver or pancreatic surgery CBGC: CABG-Chest only CARD: Cardiac surgery CHOL: Cholecystectomy COLO: Colon Surgery CRAN: Craniotomy CSEC: Cesarean section INICO

ALKOT CO

SSI rates: Comparing CDC-NHSN (USA) and International data (INICC)

FUSN: Spinal fusion FX: Open Reduction of Fracture GAST: Gastric surgery HER: Herniorrhaphy

HPRO: Hip prosthesis HYST: Abdominal hysterectomy KPRO: Knee prosthesis LAM: Laminectomy

NECK: Neck surgery NEPH: Kidney surgery INICC

ATROL CO

SSI rates: Comparing CDC-NHSN (USA) and International data (INICC)

PRST: Prostatectomy PVBY: Peripheral vascular bypass surgery REC: Rectal surgery SB: Small bowel surgery SPLE: Spleen surgery THOR: Thoracic surgery THYR: Thyroid and/or parathyroid surgery

VHYS: Vaginal Hysterectomy VSHN: Ventricular shunt XLAP: Exploratory abdominal surgery

EXTRA LENGTH OF STAY

Extra Length of Stay Rate of Central-Line Associated Bloodstream Infection

Table 14

Pooled means and 95% CIs of the distribution of the length of stay and crude excess length of stay* of ICU patients with DA-HAI, adult and pediatric ICUs combined

	LOS, total days	Patients, n	Pooled average LOS, days	95% CI
LOS of patients without DA-HAI	746,251	119,501	6.2	6.2-6.3
LOS of patients with CLABSI	28,709	1679	17.1	16.3-17.9
Extra LOS of patients with CLABSI	28,709	1679	10.9	10.1-11.6
LOS of patients with CAUTI	30,982	1677	18.5	17.6-19.4
Extra LOS of patients with CAUTI	30,982	1677	12.2	11.4-13.1
LOS of patients with VAP	90,146	5020	18.0	17.5-18.5
Extra LOS of patients with VAP	90,146	5020	11.7	11.3-12.2

CI, confidence interval; LOS, length of stay.

Table 15

Pooled means and 95% CIs of the distribution of the length of stay and crude excess length of stay* of infants in NICUs, all birth weight categories combined

	LOS, total days	Patients, n	Pooled average LOS, days	95% CI
LOS of infants without DA-HAI	537	5910	9.1	8.4-9.9
LOS of infants with CLABSI	72	204	35.3	28.7-42.3
Extra LOS of infants with CLABSI	72	204	26.2	20.3-32.4
LOS of infants with VAP	42	175	24.0	17.9-31.0
Extra LOS of infants with VAP	42	175	14.9	8.9-21.1

American Journal of Infection Control, 2012.

EXTRA MORTALITY

EXTRA MORTALITY RATES in ADULT ICUs

Table 12

Pooled means and 95% CIs of the distribution of crude mortality and crude excess mortality^{*} of ICU patients with DA-HAIs, adult and pediatric ICUs combined

	Deaths, n	Patients, n	Pooled crude mortality, %	95% CI
Crude mortality of patients without DA-HAI	11,908	119,501	10.0	9.8-10.14
Crude mortality of patients with CLABSI	414	1679	24.7	22.6-26.8
Crude excess mortality of	414	1679	14.7	12.8-16.6
Crude mortality rate of	290	1677	17.3	15.5-19.2
Crude excess mortality of	290	1677	7.3	5.7-9.1
Crude mortality rate of	1265	5020	25.2	24.0-24.5
patients with VAP Crude excess mortality of patients with VAP	1265	5020	15.2	14.2-14.3

CI, confidence interval.

*Crude excess mortality of DA-HAI 5 crude mortality of ICU patients with DA-HAI - crude mortality of patients without DA-HAI.

American Journal of Infection Control, 2012.

Extra Mortality of CLABSI

Country	ICU Type	Mortality without HAI (%)	Mortality with CLABSI (%)	Extra Mortality (%)	RR	95% CI	Р	Year
Argentina (INICC Study)	Adult	29.6	54.2	24.6	-	-	-	2003
Brazil (INICC Study)	Adult	19.2	47.1	27.8	2.44	1.46-4.09	0.0001	2008
Colombia (INICC Study)	Adult	18.1	36.6	18.5	2.02	1.42-2.87	0.0001	2006
Cuba (INICC Study)	Adult	33.0	50.0	17.0	1.52	0.4 - 6.1	0.5552	2011
El Salvador (INICC Study)	PICU	^{13.} P a	nao: 3%	to 75%	1.84	0.97 - 3.50	0.0586	2011
El Salvador (INICC Study)	NICU	12. INA	ige. J/		0 3.09	2.17 - 4.42	0.001	2011
India (INICC Study)	Adult	6.6	10.6	4.0	1.60	1.08-2.37	0.0001	2007
Lebanon (INICC Study)	Adult	19.1	60.0	40.9	3.14	1.38 - 7.13	0.0039	2011
Macedonia (INICC Study)	Adult	2.4	30.0	28	6.80,	5.25 - 8.81	0.0001	2010
Mexico (INICC Study)	Adult	21.8	41.8	20	1.92	0.95-3.85	0.06	2007
Morocco (INICC Study)	Adult	24.9	100	75.1	4.02	1.50 - 0.77	0.0027	2009
Peru (INICC Study)	Adult	14.0	29.0	15.0	2.07	1.07-4.04	0.0280	2008
Philippines (INICC Study)	Adult	6.8	10.0	3.2	1.48	0.21-10.56	0.695	2011
Philippines (INICC Study)	PICU	3.8	50.0	46.3	13.3	2.88 - 61.7	0.0001	2011
Philippines (INICC Study)	NICU	5.6	25.0	19.4	4.46	0.62 - 32.3	0.1033	2011
Tunisia (INICC Study)	PICU, NICU	8.2	14.7	6	1.79,	0.69 – 4.62,	0.2226	2010
INICC 15 countries	NICU	9.4	37.1	27.7		21.1 - 34.5		2011
INICC 18 countries	Adult, PICU	15.3	29.6	14.3	-	-	-	2008
INICC 18 countries	NICU	14.3	39.7	25.4	-	-	-	2008
INICC 25 countries	Adult, PICU	14.4	38.1	23.6	-	21.6 - 25.7	-	2009
INICC 25 countries	NICU	8.8	34.5	25.7	-	26.7 - 42.9	-	2010
INICC 36 countries	Adult, PICU	10.0	24.7	14.7		12.8 - 16.6		2010
INICC 36 countries	NICU	9.1	35.3	26.2	-	20.3 - 32.4		2010
INICC 8 countries	Adult, PICU, NICU	17.1	35.2	18.0	-	-	-	2006

Extra Mortality of VAP

Country	ІСИ Туре	Mortality without HAI (%)	Mortality with VAP (%)	Extra Mortality (%)	RR	95% CI	Р	Year
Argentina (INICC Study)	Adult	37.2	71.4	34.2	-	-	-	2003
Argentina (INICC Study)	Adult	33.2	63.5	30.3	-	-	0.0001	2005
Brazil (INICC Study)	Adult	19.2	34.5	15.3	2.91	2.72-3.13	0.0001	2008
Colombia (INICC Study)	Adult	18.1	35.0	16.9	1 93	1.24 - 3.00	0.003	2006
Costa Rica (INICC Study) Croatia (INICC Study)	Adult Adult	Rai	nge: 3	<mark>% to 9</mark>	2%	0.45 - 32.95 0.96-59.64	0.1678 0.0236	2009 2006
Cuba (INICC Study)	Adult	33	80	47	2.42	0.9 - 6.5	0.0693	2011
El Salvador (INICC Study)	PICU	13.6	19.0	5.5	1.4	0.78 - 2.53	0.2592	2011
El Salvador (INICC Study)	NICU	12.3	23.0	10.7	1.88	1.20 - 2.93	0.0050	2011
India (INICC Study)	Adult	6.6	25.6	19.0	3.87	2.70-5.54	0.0001	2007
Lebanon (INICC Study)	Adult	19.1	15.0	-	0.78	0.25 - 2.47	0.6780	2011
Macedonia (INICC Study)	Adult	2.4	45.5	43	19.05	5.25 - 8.81	0.0001	2010
Morocco (INICC Study)	Adult	24.9	81.6	56.7	3.28	2.51 - 4.29	0.0001	2009
Peru (INICC Study)	Adult	14.0	38.5	24.5	2.75	2.00-3.78	0.0001	2008
Philippines (INICC Study)	Adult	6.8	9.7	3.0	1.44	0.67 - 3.06	0.3454	2011
Philippines (INICC Study)	PICU	3.8	0.0	-3.8	Undef	Undef	0.7373	2011
Philippines (INICC Study)	NICU	5.6	-	-	-	-	-	2011
Tunisia (INICC Study)	PICU, NICU	8.2	100	92	12.17,	3.71 - 39.96	0.0001	2010
INICC 10 countries	Adult, PICU, NICU	-	14%	-	-	2 - 27	-	2011
INICC 15 countries	NICU	9.4	27.3	17.9	-	-		2011
INICC 18 countries	Adult, PICU, NICU	15.3	42.8	27.5	-	-	-	2008
INICC 18 countries	NICU	14.3	46.5	32.2	-	-	-	2008
INICC 25 countries	Adult, PICU	14.4	43.7	29.3	-	27.1 - 31.4	-	2009
INICC 25 countries	NICU	9.4	27.3	17.9	-	11.0 - 25.8	-	2010
INICC 36 countries	Adult, PICU,	10.0	25.2	15.2				2010
INICC 36 countries	NICU	9.1	24.0	14.9	-	8.9 - 21.1	-	2010
INICC 8 countries	Adult PICU NICU	171	44 9	27.8	_	_	_	2006

Extra Mortality of CAUTI

Country	ІСИ Туре	Mortality without HAI (%)	Mortality with CAUTI (%)	Extra Mortality (%)	RR	95% CI	Р	Year
Argentina (INICC Study)	Adult	37.2	42.9	5.7	-	-	-	2003
Brazil (INICC Study)	Adult	19.2	30.0	10.7	1.5 6	0.69-3.52	0.287 5	2008
Colombia (INICC Study)	Adult	Rang	<mark>e: 4% to</mark>	<mark>21%</mark>	1.5 8	0.78-3.18	0.199	2006
Cuba (INICC Study)	Adult	40.0	50.0	10.0	1.2 5	0.40-3.93	0.701 8	2008
El Salvador (INICC Study)	PICU	13.6	18.2	4.6	1.3 4	0.33 - 5.41	0.681	2011
India (INICC Study)	Adult	6.6	18.2	11.6	2.8 3	2.57-3.12	0.000 1	2007
Lebanon (INICC Study)	Adult	19.1	12.5	-	0.6 5	0.16 - 2.65	0.548 7	2011
Morocco (INICC Study)	Adult	24.9	43.6	18.7	1.7 5	1.08 - 2.85	0.021 8	2009
Peru (INICC Study)	Adult	14.0	18.2	4.2	1.3 0	0.49-3.49	0.602 8	2008
Philippines (INICC Study)	Adult	6.8	3.8	-2.9	0.5 7	0.08 - 4.06	0.568 3	2011
INICC 10 countries	Adult, PICU, NICU	-	15%	-	-	3 – 28	-	2011
INICC 18 countries	Adult, PICU,	15.3	35.8	20.5			-	2008
INICC 25 countries	Adult, PICU,	14.4	32.9	18.5	-	15.1 – 22.1	-	2009
INICC 36 countries	Adult, PICU,	10.0	17.3	7.3	-	5.7 – 9.1	-	2010
INICC 8 countries	Adult PICU	171	38.4	21.3			-	2006

Extra Costs and Length of Stay of HAIs

Open Access

Hospital costs of central line-associated bloodstream infections and cost-effectiveness of closed vs. open infusion containers. *The case of Intensive Care Units in Italy*

Rosanna Tarricone¹, Aleksandra Torbica^{1*}, Fabio Franzetti², Victor D Rosenthal³

Abstract

RESEARCH

Objectives: The aim was to evaluate direct health care costs of central line-associated bloodstream infections (CLASS) and to calculate the cost-effectiveness ratio of closed fully collapsible plastic intravenous infusion containers vs. open (glass) infusion containers.

Methods: A two-year, prospective case-control study was undertaken in four intensive care units in a trailant teaching hospital. Patients with CLABSI (cases) and patients without CLABSI (controls) were matched for admission departments, gender, age, and average severity of illness score. Costs were estimated according to micro-costing approach. In the cost effectiveness analysis, the cost component was assessed as the difference between production costs while effectiveness was measured by CLABSI rate (number of CLABSI per 1000 central line days) associated with the two infusion containers.

Results: A total of 43 cases of CLASSI were compared with 97 matched controls. The mean age of cases and controls was 621 and 666 years, respectively (p = 0.43), 56% of the cases and 57% of the controls was 621 and 666 years, respectively (p < 0.001). Overall, the mean total costs of patients with and without CLASSI were \pounds (8.241 and \pounds 9087, respectively) (p < 0.001). Overall, the mean total costs of patients with and without CLASSI were \pounds (8.241 and \pounds 9087, respectively) (p < 0.001). Overall, the mean total costs of patients with and without CLASSI were \pounds (8.241 and \pounds 9087, respectively) (p < 0.001). On average, the extra cost for drugs vas \pounds 9.180 (> 0.001), for subject \pounds 133 (p = 0.16), for lab tests \pounds 171 (p < 0.001), and for specialist visits \pounds 15 (p = 0.019). The mean extra cost for hospital stay (overhead) was \pounds 7.180 (< 0.001). The dosed infriction container was a dominant strategy. It resulted in lower CLASSI rates (3.5 v.s. 8.2 CLASSIs per 1000 central line days for closed vs. open infrusion container was offset by savings incurred in order classical production costs. The higher acquisition cost of the closed infrusion container was engleadily with cost of the closed infrusion container was offset by savings incurred in order classical production costs.

Conclusions: CLASS results in considerable and significant increase in utilization of hospital resources. Use of innovative technologies such as closed infusion containers can significantly reduce the incidence of healthcare acquired infection without posing additional burden on hospital burdgets.

The attributable cost, length of hosp and mortality of central line-associated bloodstream infection in intensive care departments in Argentina: A prospective, matched analysis

Victor Daniel Rosenthal, MD, MSc, CIC, ^a Sandra Guzman, RN, ICP,^a Oscar Migone, MS,^b and Christopher J. Crnich, MD^c Buenos Aires, Argentina, and Madison, Wisconsin

Background: Limited information is available on the financial impact of central venous catheter-associated bloodstream infection (BSI) in Argentina. To calculate the cost of BSIs in the intensive care department (ICU), a 5-year prospective nested case-control study was undertaken at 3 hospitals in Argentina.

Methods: We studied 6 adult ICUs from 3 hospitals. In all, 142 patients with BSI and 142 control patients without BSI were matched for hospital, type of ICU, year of admission, length of stay, sex, age, and average severity of illness score. Patients' length of stay in the ICU was obtained prospectively on daily rounds. The hospitals' finance departments provided the cost of each ICU day. The hospitals' pharmacies provided the cost of antibiotics prescribed for BSIs.

Results: The mean extra length of stay for patients with BSI compared with control patients was 11.9 days, the mean extra antibiotic defined daily dose was 22.6, the mean extra antibiotic cost was \$1915, the mean extra cost was \$4888.42, and the excess mortality was 24.6%.

Conclusions: In this study, patients with central venous catheter-associated BSI experienced significant prolongation of hospitalization, increased use of health care costs, and a higher attributable mortality. These findings support the need to implement preventative interventions for patients hospitalized with central venous catheters in Argentina. (Am J Infect Control 2003;31:475-80.)

The attributable cost and length hospital stay because of nosocom pneumonia in intensive care units in 3 hospitals in Argentina: A prospective, matched analysis

Victor D. Rosenthal, MD, MSc, CIC,^a Sandra Guzman, RN, ICP,^a Oscar Migone, MS,^b and Nasia Safdar, MD^c Buenos Aires, Argentina, and Madison, Wisconsin

Background: No information is available on the financial impact of nosocomial pneumonia in Argentina. To calculate the cost of nosocomial pneumonia in intensive care units, a 5-year, matched cohort study was undertaken at 3 hospitals in Argentina.

Setting: Six adult intensive care units (ICU).

Methods: Three hundred seven patients with noncomial pneumonia (exposed) and 307 patients without noscomial pneumonia (unexposed) were matched for hospital, ICU type, year admitted to study, length of stay more than 7 days, sex, age, antibiotic use, and average sevenity of illness score (ASIS). The patient's length of stay (LOS) in the ICU was obtained prospectively in daily rounds, the cost of a day was provided by the hospital's finance department, and the cost of antibiotics prescribed for nosocomial pneumonia was provided by the hospital's pharmacy department.

Results: The mean extra LOS for 307 cases (compared with controls) was 8.95 days, the mean extra antibiotic defined daily doses (DDD) was 15, the mean extra antibiotic cost was \$996, the mean extra total cost was \$2255, and the extra mortality was 30.3%.

Conclusions: Nosocomial pneumonia results in significant patient morbidity and consumes considerable resources. In the present study, patients with nosocomial pneumonia had significant prolongation of hospitalization, cost, and a high extra mortality. The present study illustrates the potential cost savings of introducing interventions to reduce nosocomial pneumonia. To our knowledge, this is the first study evaluating this issue in Argentina. (Am J Infect Control 2005;35:157-61.)

INFECTION CONTROL AND HOSPITAL EPIDENIOLOGY JANUARY 2007, VOL. 28, NO. 1

ORIGINAL ARTICLE

Attributable Cost and Length of Stay for Patients With Central Venous Catheter–Associated Bloodstream Infection in Mexico City Intensive Care Units: A Prospective, Matched Analysis

Francisco Higuera, MD; Manuel Sigfrido Rangel-Frausto, MD; Victor Daniel Rosenthal, MD, CIC, MSG; Jose Martinez Soto, MD; Jorge Castanon, MD; Guillermo Franco, MD; Natividad Tabal-Galan, RN, ICP; Javier Ruiz, MD; Pablo Duarte, MD; Nicholas Graves, PhD

BACKOBOUND. No information is available about the financial impact of central venous catheter (CVC)-associated bloodstream infection (BSI) in Mexico.

OBJECTIVE. To calculate the costs associated with BSI in intensive care units (ICUs) in Mexico City.

DESIGN. An 18-month (June 2002 through November 2003), prospective, nested case-control study of patients with and patients without BSL serverses. Adult ICUs in 3 hospitals in Mexico City.

PATIENTS AND METHODS. A total of 55 patients with BSI (case patients) and 55 patients without BSI (control patients) were compared with respect to hospital, type of ICU, year of hospital administon, length of ICU stay, sex, age, and mean severity of illness score. Information about the length of ICU stay was obtained prospectively during daily rounds. The daily cost of ICU stay was provided by the finance department of each hospital. The cost of antibiotics prescribed for BSI was provided by the hospitals' pharmacy departments.

RESULTS. For case patients, the mean extra length of stay was 6.1 days, the mean extra cost of antibiotics was \$598, the mean extra hospital cost was \$11,591, and the attributable extra mortality was 20%.

CONCLUSIONS. In this study, the duration of ICU stay for patients with central venous catheter-associated BSI was significantly longer than that for control patients, resulting in increased healthcare costs and a higher attributable mortality. These conclusions support the need to implement preventive measures for hospitalized patients with central venous catheters in Mexico.

Infect Control Hosp Epidemiol 2007; 28:31-35

The attributable cost, length of hospital stay, and mortality of central line-associated <u>BLOODSTREAM INFECTION</u> in intensive care departments in Argentina: A prospective, matched analysis.

Table I Deceling characteristics of patients

	Case nationts Control na				
	(N = 142)	(N = 142)			
Average length of stay \geq 7d (%)	142 (100)	142 (100)			
Mean age (SD)	70.09 (±14.17)	68.88 (±13.74)*			
No. males (%)	83 (58.5)	83 (58.5)*			
No. admitted to medical/surgical ICU (%)	116 (81.7)	116 (81.7)*			
Mean ASIS (SD)	3.30 (±1.08)	3.09 (±0.90)*			
Number included in study by year (%)					
1998	25 (17.6)	27 (19.0)			
1999	50 (35.2)	49 (34.5)			
2000	46 (32.4)	37 (26.1)			
2001	19 (13.4)	27 (19.0)			
2002	2 (1.4)	2 (1.4)			

ASIS, Average severity of illness score; ICU, intensive care unit.

*No statistical difference found.

Rosenthal VD, et al. Am J Infect Control 2003;31(8):475-80.

The attributable cost, length of hospital stay, and mortality of central line-associated <u>BLOODSTREAM INFECTION</u> in intensive care departments in Argentina: A prospective, matched analysis.

	Case (N= 142)	Control (N= 142)	Extra Expenditures
Total days	3,322	1,632	1690
Average length of stay in ICU	23.39 (SE 1.49)	11.49 (SE 0.68)	11.90
Total fixed cost	\$830,500	\$408,000	\$422,500
Mean fixed cost	\$5,848 (SE 372.89)	\$2,873 (SE 171.07)	\$2,975
Antibiotic utilization			
Total antibiotics (in DDD*)	4,568	1,356	3,212
Mean antibiotic use per patient (DDD*)	32.16 (SE 2.81)	9.54 (SE 1.05)	22.62
Total cost of antibiotics	\$301,488	\$29,832	\$271,656
Mean costs of antibiotics per patient	\$2,123 (SE 186.06)	\$210 (SE 23.09)	\$1,913
Aggregate costs	\$1,131,988	\$437,832	\$694,156
Mean aggregate costs per patient	\$7,971.74	\$3,083.32	\$4,888.42
Average mortality	77/142 (54.2%)	42/142 (29.6%)	24.6%

Rosenthal VD, et al. Am J Infect Control 2003;31(8):475-807

The Attributable Cost, And Length Of Hospital Stay Of Central Line Associated <u>BLOOD STREAM INFECTION</u> In Intensive Care Units In Brazil. A Prospective, Matched Analysis

	BSI	Controls	Extra	RR	95 % CI	P-value
Total patients (n)	70	140				
Total Antibiotic DDD, (DDD)	4243	2124				
Antibiotic DDD per patient, (DDD)	60.61	15.17	45.44			
Total Antibiotic cost (US\$)	312,225.54	99,930.12				
Antibiotic cost per patient, (US\$)	4,460.36	713.78	3,746.58			
Length of Stay (days)	30.58 <u>+</u> 20.41	6.95 <u>+</u> 4.89	23.6	4.40	4.08 – 4.75	0.0000
Cost (US\$)	9,843.35	1,937.18	7,906			
Total deaths (n)	23	45				
Crude mortality (%)	32.9%	32.1%		1.02	0.62 – 1.69	0.9316

Reinaldo Salomao, <u>Victor D. Rosenthal</u>, et al. APIC Meeting. Tampa, USA. June 2006.

The Attributable Cost, And Length Of Hospital Stay Of Central Line Associated <u>BLOOD STREAM INFECTION</u> In Intensive Care Units In Mexico. A Prospective, Matched Analysis.

	Control (N= 55)	Case (N= 55)	Overall Attributable Extra Expenditures	Attributable Extra Expenditures per patient
Average length of stay in ICU (days)	406	739	333	6.05
Antibiotics (US\$)	13,354.35	46,265.96	32,911.61	598.39
Other medicaments (US\$)	128,415.14	129,832.44	1,417.30	25.77
Disposables (US\$)	219,345.82	308,808.79	89,462.97	1,626.60
Cultures (US\$)	1,171.40	2,111.85	940.45	17.10
Other lab tests (US\$)	37,441.19	61,174.01	23,732.82	431.51
X ray, Scan, etc (US\$)	15,198.40	19,556.44	4,358.04	79.24
Other costs (US\$)	44,395.46	71,105.56	26,710.09	485.64
Hospitalization (fixed costs) (US\$)	496,326.78	954,294.33	457,967.55	8326.68
Total cost (US\$)	955,648.55	1,593,149.38	637,500.83	11,590.92

Higuera F, Rangel-Frausto M, <u>Rosenthal VD</u>, Graves N, et al. Infection Control and Hospital Epidemiology. January 2007.

The attributable cost and length of hospital stay because of nosocomial pneumonia in intensive care units in 3 hospitals in Argentina: A prospective, matched analysis

Victor D. Rosenthal, MD, MSc, CIC,^a Sandra Guzman, RN, ICP,^a Oscar Migone, MS,^b and Nasia Safdar, MD^c Buenos Aires, Argentina, and Madison, Wisconsin

Background: No information is available on the financial impact of nosocomial pneumonia in Argentina. To calculate the cost of nosocomial pneumonia in intensive care units, a 5-year, matched cohort study was undertaken at 3 hospitals in Argentina.

Setting: Six adult intensive care units (ICU).

Methods: Three hundred seven patients with nosocomial pneumonia (exposed) and 307 patients without nosocomial pneumonia (unexposed) were matched for hospital, ICU type, year admitted to study, length of stay more than 7 days, sex, age, antibiotic use, and average severity of illness score (ASIS). The patient's length of stay (LOS) in the ICU was obtained prospectively in daily rounds, the cost of a day was provided by the hospital's finance department, and the cost of antibiotics prescribed for nosocomial pneumonia was provided by the hospital's pharmacy department.

Results: The mean extra LOS for 307 cases (compared with controls) was 8.95 days, the mean extra antibiotic defined daily doses (DDD) was 15, the mean extra antibiotic cost was \$996, the mean extra total cost was \$2255, and the extra mortality was 30.3%.

Conclusions: Nosocomial pneumonia results in significant patient morbidity and consumes considerable resources. In the present study, patients with nosocomial pneumonia had significant prolongation of hospitalization, cost, and a high extra mortality. The present study illustrates the potential cost savings of introducing interventions to reduce nosocomial pneumonia. To our knowledge, this is the first study evaluating this issue in Argentina. (Am J Infect Control 2005;33:157-61.)

Table I. Baseline characteristics of patients with and without nosocomial pneumonia

	Cases, $N = 307 (\%)$	Control, N = 307 (%)	P value
	14 - 507 (10)	14 - 307 (/6)	г чане
LOS (7 or more days)	307 (100)	307 (100)	NS
Age, mean, SD, years	73.79 SD 11.97	69.90 SD 11.48	NS
Sex (male)	157/307 (51.1)	157/307 (51.1)	NS
ICU (Ms ICU)	247/307 (80.5)	247/307 (80.5)	NS
Average severity of illness score, mean, SD	3.34 SD 0.95	3.11 SD 0.83	NS
Year	1998 (5.2)	1998 (6.8)	NS
	1999 (20.5)	1999 (18.9)	
	2000 (24.4)	2000 (22.8)	
	2001 (43.0)	2001 (44.6)	
	2001 (6.8)	2001 (6.8)	

ICU, Intensive care unit; LOS, length of stay; MsICU, Medical Surgical Intensive care unit.

	Case (N = 307)	Control (N = 307)	Attributable extra expenditures	
Total days	6043	3295	Total extra days: 2748	
LOS	19.68	10.73	Mean extra days: 8.95	
	SE 0.794	SE 0.308	T test P value ≤ 0.000	
	SD 13.90	SD 5.39		
	Percentile 25% 11	Percentile 25% 8		
	Percentile 75% 24	Percentile 75% 11		
	Median 16	Median 9		
Total fixed cost	\$1,510,750 (SE 0.794)	\$823,750	Fixed Extra Cost: \$687,000	
Mean fixed cost	\$4,921 (SE 198,43)	\$2,683 (SE 76.97)	Mean extra cost: \$2,238	
Total antibiotic DDD	7815	3181	Antibiotic extra DDD: 4,634	
Mean antibiotic DDD	25.45 (SE 1.4)	10.36 (SE 0.64)	Mean extra antibiotic DDD: 15.09	
Total antibiotic cost	\$515,790	\$209,946	Antibiotic extra cost: \$305,844	
fean antibiotic cost \$1,680.09 (SE 93.85)		\$683.86 (SE 42.73)	Mean extra antibiotic cost: \$996.22	
Total global cost	\$1,518,565	\$826,931	Total extra global cost: \$691,634	
Mean Global Cost	\$4,946.46	\$2,693.58 (SE 77.3)	Mean total extra global cost: \$2,252.88	
	SE 199.57	SE 77.3		
	SD 3,496.79	SD 1,354.55	T test P value 0.0000	
	Percentile 25% 2751	Percentile 25% 2000		
	Percentile 75% 6049	Percentile 75% 2780		
	Median 4010	Median 2257		

Table 2. Extra expenditures of nosocomial pneumonia

DDD, Defined daily dose; LOS, length of stay.

Table 3. Extra mortality of nosocomial pneumonia

	Case (N = 307)	Control (N = 307)	Attributable extra expenditures
Total mortality	195	102	Total extra dead: 90
Percentage mortality	63.51%	33.22%	Extra attributable mortality: 30.3%
			Kruskal Wallis 56.31 P value ≤0.000

INICC Platform and Strategy in order to **Counduct Surveillance:** in ICU, in General Wards and in Surgical Procedures

Detailed Surveillance in ICU

INICC

Detailed Adult and Pediatric ICU Outcome Surveillance -

ICU Aggregated Surveillance Data -

Inpatient Wards and Step Down Units Outcome Surveillance

Microbiology Results -

Adult and Pediatric Units Neonatal CRF#1B Surgical Procedures

Frequently Asked Questions

Welcome, test -

Available Documentation

CDC- NHSN- Definitions of HAI- 2013 CDC- NHSN- Device Associated Infections Report- 2011 CDC- NHSN- Microorganism Profile and Bacterial Resistance Report- 2008 CDC- NHSN- Surgical Site Infection Rates- Risk Adjusted Measures- 2006 to 2008 CDC- NHSN- Surgical Site Infection and Device Assoaciated Inf Rates Report-2006 to 2008 INICC- Device Associated Infections Rates Report- 2004 to 2009 INICC- Methodology- 2008 INICC- Surgical Site Infection Rates Report- 2006 to 2010

Agreggated Surveillance in ICU

INICC

Detailed Adult and Pediatric ICU Outcome Surveillance -

ICU Process Surveillance - Surgical Procedures

ICU Aggregated Surveillance Data -

Inpatient Wards and Step Down Units Outcome Surveillance

Microbiology Results -

Adult and Pediatric ICU Aggregated Surveillance Data Neonatal ICU Aggregated Surveillance Data

Available Documentation

CDC- NHSN- Definitions of HAI- 2013 CDC- NHSN- Device Associated Infections Report- 2011 CDC- NHSN- Microorganism Profile and Bacterial Resistance Report- 2008 CDC- NHSN- Surgical Site Infection Rates- Risk Adjusted Measures- 2006 to 2008 CDC- NHSN- Surgical Site Infection and Device Assoaciated Inf Rates Report-2006 to 2008 INICC- Device Associated Infections Rates Report- 2004 to 2009 INICC- Methodology- 2008 INICC- Surgical Site Infection Rates Report- 2006 to 2010

Detailed Surveillance in General Wards and Step Down Units

INICC

Detailed Adult and Pediatric ICU Outcome Surveillance - ICU Aggregated Surveillance Data - Inpatient Wards and Step Down Units Outcome Surveillance Microbiology Results - ICU Process Surveillance - Surgical Procedures Frequently Asked Questions Welcome, test -

Available Documentation

CDC- NHSN- Definitions of HAI- 2013 CDC- NHSN- Device Associated Infections Report- 2011 CDC- NHSN- Microorganism Profile and Bacterial Resistance Report- 2008 CDC- NHSN- Surgical Site Infection Rates- Risk Adjusted Measures- 2006 to 2008 CDC- NHSN- Surgical Site Infection and Device Associated Inf Rates Report-2006 to 2008 INICC- Device Associated Infections Rates Report- 2004 to 2009 INICC- Methodology- 2008 INICC- Surgical Site Infection Rates Report- 2006 to 2010

Micoorganism Profile and Bacterial Resistance

INICC

ICU Process Surveillance -

Detailed Adult and Pediatric ICU Outcome Surveillance -

Surgical Procedures

ellance + ICO Aggregate

Frequently Asked Questions

ICU Aggregated Surveillance Data - Inpatient V

Welcome, test -

Inpatient Wards and Step Down Units Outcome Surveillance

Microbiology Results -

Adult and Pediatric Microbiology Result

Neonatal Microbiology Results CRF#2

Available Documentation

CDC- NHSN- Definitions of HAI- 2013 CDC- NHSN- Device Associated Infections Report- 2011 CDC- NHSN- Microorganism Profile and Bacterial Resistance Report- 2008 CDC- NHSN- Surgical Site Infection Rates- Risk Adjusted Measures- 2006 to 2008 CDC- NHSN- Surgical Site Infection and Device Associated Inf Rates Report-2006 to 2008 INICC- Device Associated Infections Rates Report- 2004 to 2009 INICC- Methodology- 2008 INICC- Surgical Site Infection Rates Report- 2006 to 2010

Bundles of Care

Surveillance of Surgical Procedures

INICC

Detailed Adult and Pediatric ICU Outcome Surveillance -

ICU Aggregated Surveillance Data -

Inpatient Wards and Step Down Units Outcome Surveillance

Microbiology Results -

ICU Process Surveillance -

Surgical Procedures

Frequently Asked Questions

Welcome, test -

Available Documentation

CDC- NHSN- Definitions of HAI- 2013 CDC- NHSN- Device Associated Infections Report- 2011 CDC- NHSN- Microorganism Profile and Bacterial Resistance Report- 2008 CDC- NHSN- Surgical Site Infection Rates- Risk Adjusted Measures- 2006 to 2008 CDC- NHSN- Surgical Site Infection and Device Assoaciated Inf Rates Report-2006 to 2008 INICC- Device Associated Infections Rates Report- 2004 to 2009 INICC- Methodology- 2008 INICC- Surgical Site Infection Rates Report- 2006 to 2010

Go to "http://admin.inicc.org/admin/pacientes/surgeryvigilancepatient/"

Frequent Asked Questions

System detect any "inconsistent date" will show you a red alarm sign in order to ask you to correct that "inconsistent date". 6- I recommend you to check consistency of those dates when

Detailed Surveillance in ICU

INICC	ICU Outcome Su	urveillance - Mic	robiology Results -	ICU Process Surveillance -	Surgical Procedures	Configuration +	Welcome, Victor -	
Home	Adult ICU outcom	e surveillance Ac	d Adult ICU outcome	surveillance				
Add A	Adult ICU outc	ome surveillan	Ce			Health Care Acqu	ired Infection (HAI) according	to CDC-NHSN Criteria
Fields in	bold are required.							
Patient D Daily Vita Patient o	Data Type of sta al Signs and APACH discharge from ICU	y and severity illnes IE II score Invas	s scores Previous live Devices Usage	Infections Underlying / Pre Antibiotic used Adult Cult	evious Diseases Diagno tures Done Culture Res	osis made during this I sults of the Adult Patie	hospitalization Artificial Nu nt Adult Health Care Acqu	trition ired Infection (HAI) result
	Hospital:		\$					
ICU - I	Intensive Care Unit:	*****	\$					
Patient Data	Severity illness scores	Previous Infections	Underlying / Previous	Diseases	Diagnosis made during	this hospitalization	Artificial Nutrition	
------------------	----------------------------	------------------------	-----------------------	-------------	------------------------	----------------------	---------------------------------	
Daily Vital Sign	s and APACHE II score	Invasive Devices Usage	Antibiotic used	Adult and P	ediatric Cultures Done	Culture Results of	the Adult and Pediatric Patient	
Adult and Pedia	atric Health Care Acquired	Infection (HAI) result	Patient Discharge					

Invasive Devices Usage

Date		Devices			
29/11/2013	Today	Devices of your patient to be chosen @	Chosen Devices of your patient		
		Filter			
		Central Arterial Catheter Central Line Femoral Central Line Jugular Central Line Subclavian Central Line Swan Ganz CPAP- Continuous Positive Airway Pre EndoTracheal Tube NO Mechanical Vi External Ventricular Drain Hemodialvsis Arterial Venous Eistula			

Patient Discharge

1		
Date of discharge from ICU:	29/11/2013	Today 🚍
Final ICU outcome:		+

Culture Results of the Adult and Pediatric Patient

Date:	29/11/2013	Today
Type of Culture:		\$
Microorganism:		\$
Antibiogram for:		\$

INICC

Detailed Adult and Pediat	ric ICU Outcome Surveillance - ICI	Aggregated Surveillance Da	ta - Inpatient Wards and S	tep Down Units Outcome Surveillance	Microbiology Results -
ICU Process Surveillance	 Surgical Procedures Freque 	itly Asked Questions Wel	come, test 👻		
Change Adult and	Pediatric ICU outcome surve	villance		Health Care Acquired Infection (H	AI) according to CDC-NHSN Criteria
Fields in bold are require	d.				
Patient Data Severity	Illness scores Previous Infections	Underlying / Previous Disea	ases Diagnosis made durin	g this hospitalization Artificial Nutrition	חמ
Daily Vital Signs and APA	CHE II score Invasive Devices Usag	e Antibiotic used Adul	It and Pediatric Cultures Done	Culture Results of the Adult and Peo	diatric Patient
Adult and Pediatric Health	Care Acquired Infection (HAI) result	Patient Discharge			
Hospital:	INICC Test Hospital				
ICU - Intensive Care Unit:	Critical Care- Medical/Surgice \$				

INICC

Detailed Surveillance in ICU Detailed Adult and Pediatric ICU Outcome Surveillance - ICU Aggregated Surveillance Data -

Inpatien

ICU Process Surveillance -

Surgical Procedures

Frequently Asked Questions

Welcome, test -

Select Patient HAI Critera

Criteria : Age

Age

<=1 year old

>12 years old

>=1 year old or <=12 years old

Any age

Criteria : Signs and Symptoms- Vital Signs

Vital Signs

Bradycardia (<100 beats/min)

- Fever (>38C or >100.4F)
- Hypotension*, *With no other recognized cause
- Hypothermia (<36.5C or <97.7F)
- Tachycardia (>170 beats/min)
- Temperature instability

Back to ICU

Diagnosis of Health Care Acquired Infection (HAI) according with CDC-NHSN criteria:: PNU1 Clinically-defined pneumonia- For >12 years old

Generating ICU Report

Country	Argentina	÷
City	Buenos Aires	\$
Hospital	INICC Test Hospital	÷
cus	Medical/Surgical	\$
Date start	17/06/2013	
Date end	17/08/2013	

ICU Report: Patient Features

ICU Report: Proportion of HAIs

INICC						
Detailed Adu	it and Pediatric ICU Outcome Surveilland	xe∓ ICU	Aggregated Surveillance Data Inpatient Wards and Step Down Units Outcome Surveillance Microbiology Results			
ICU Process	Surveillance - Surgical Procedures	Frequent	tly Asked Questions Welcome, test -			
Country	Argentina 💲		Patient Characteristics Proportion of device associated infections Healthcare-Acquired Infections (HAI) Rates			
City	Buenos Aires \$		Pooled Means Device Associated Infection Rates, and Device Utilization Ratios, DA Module. Benchmark with Standards Microorganism Profile of Health Care Associated Infections (HAI) Atributable Extra Length of Stay			
Hospital	Choose your Hospitals @		Atributable extra mortality Hand Hygiene Compliance Compliance with Bundle To Prevent BSI			
	Filter	Compliance with Bundle To Prevent PNEU Compliance with Bundle To Prevent UTI				
			Adult HAIs			
	Choose all					
	Your chosen Hospitals 🍙					
	INICC Test Hospital		BSI: Bloodstream Infection: 37.93 % UTI: Urinary tract infection.: 44.83 %			

ICU Report: Device Associated Infection rates per 1000 Devices Days

Device asociated infections. Pooled Analysis

ICU Report: CLABSI per 1000 CL Days per Month

ICU Report: VAP per 1000 MV Days per Month

ICU Report: CAUTI per 1000 UC Days per Month

ICU Report: CLABSI per 1000 CL Days per Month, and Devide Utilization Rate. Benchamark with CDC NHSN and with INICC

	Choose all	
	Your chosen Hospitals 🍘	
	INICC Test Hospital	
	Remove all	
lcus	Critical Care- Medical/Surgice \$	
Date start	01/06/2013	
Date end	30/11/2013	

	This Hospital	CDC- NHSN	INICC
Number of Patients	38	-	-
Number of Bed Days	710	- 14	-
Number of CLAB	11	-	-
Central line-days	94	-	- 19 4 7 - 11
Central line utilization ratio	0.13	0.54	0.53
Central line-associated BSI rate	20.58	1.40	6.80

Pooled means of central line-associated BSI rates, central line utilization ratios, DA module. Benchmark with Standards

ICU Report: VAP per 1000 MV Days per Month, and Devide Utilization Rate. Benchamark with CDC NHSN and with INICC

Pooled means of ventilator-associated PNEU rates, ventilator utilization ratios, DA module. Benchmark with Standards

	This Hospital	CDC- NHSN	INICC
Number of Patients	38	+	4
Number of Bed Days	710		
Number of VAP	5		-
Ventilator-days	68		-
Ventilator utilization ratio	0.10	0.41	0.38
Ventilator-associated PNEU rate	14.18	2.10	15.80

ICU Report: CAUTI per 1000 UC Days per Month, and Devide Utilization Rate. Benchamark with CDC NHSN and with INICC

Pooled means of Urinary Catheter Associated UTI rate, and Urinary Catheter Utilization Ratio, DA module. Benchmark with Standards

	This Hospital	CDC- NHSN	INICC
Number of Patients	38	-	-
Number of Bed Days	710	· · · ·	-
Number of UTI	13	120	
Urinary Catheter days	73	477	- 93
Urinary Catheter Utilization Ratio	0.10	0.69	0.56
Urinary Catheter Associated UTI rate	30.06	2.20	6.30

ICU Report: Micrrorganism Profile of CLABSI, VAP and CAUTI

Microorganism Profile of Healthcare-Acquired Pneumonias (PNEU)

ICU Report: Extra Lenght of Stay per HAI

Pooled Means Device Associated Infection Rates, and Device Utilization Ratios, DA Module. Benchmark with Standards

Microorganism Profile of Health Care Associated Infections (HAI)

Atributable Extra Length of Stay

Atributable extra mortality Hand Hygiene Compliance Compliance with Bundle To Prevent BSI

Compliance with Bundle To Prevent PNEU Compliance with Bundle To Prevent UTI

Type of patient	Average length of stay	Extra length of stay
Length of stay of Adult patient wihout HAI	12.41	0.00
Length of stay of Adult patient BSI	15.50	3.09
Length of stay of Adult patient PNEU	30	17.59
Length of stay of Adult patient UTI	16.50	4.09
Length of stay of Adult patient with several HAIs	7	0.00

ICU Report: Extra Mortality per HAI

Pooled Means Device Associated Infection Rates, and Device Utilization Ratios, DA Module. Benchmark with Standards

Microorganism Profile of Health Care Associated Infections (HAI) Atributable Extra Length of Stay

Atributable extra mortality Hand Hygiene Compliance Compliance with Bundle To Prevent BSI

Compliance with Bundle To Prevent PNEU Con

Compliance with Bundle To Prevent UTI

Type of patient	Percentage of deaths (%)	Extra mortality (%)		
Mortality of Adult patient wihout HAI	5.88	0.00		
Mortality of Adult patient BSI	37.50	31.62		
Mortality of Adult patient PNEU	75	69.12		
Mortality of Adult patient UTI	25	19.12		
Mortality of Adult patient with several HAIs	0	0.00		

SSI Report: Generating Report

City	*
Hospital	Choose your Hospitals @
	Filter
	Beijing Chao Yang Hospital Belle Vue Clinic BNDH BOMBAY HOSPITAL MEDICAL RESEARCH CENT Cardinal Santos Medical Center
	Choose all
	Your chosen Hospitals @

SSI Report: Generating Report

	Choose an	_
	Your chosen Hospitals 🝘	
	Remove all	
Date start	30/11/2013	
Date end	30/11/2013	

SSI Report: Hospital Setting, Patient Features, and Surgical Features

Hospital, and Patient Characteristics	Wound Clasification	Surgical Procedures
Surgical Procedures Characteristics, a	and Surgical Site Infection	s Process Surveillance
SSI rates, Benchmark with Internation	al Standards	
Hospital		
Country		Colombia
Number of Patients		376
Average Age		58.00
Average Weight		70.38
Average Heigth		159.17
Malnutrition Rate		0 / 4.00 (0 %)
Overweight Rate		1 / 4.00 (0 %)
Diabetes Rate		35 / 235.00 (0 %)

SSI Report: Wound Classification

Hospital, and Patient Characteristics	Wound Clasification	Surgical Procedures
Surgical Procedures Characteristics, a	nd Surgical Site Infectio	ns Process Surveillance
SSI rates, Benchmark with Internationa	al Standards	
Clean		207 / 376 (55 %)
Clean-Contaminated		165 / 376 (43 %)
Contaminated		0 / 376 (0 %)
Dirty		1 / 376 (0 %)

SSI Report: Wound Codes

Hospital, and Patient Characteristics

Wound Clasification

Surgical Procedures

Surgical Procedures Characteristics, and Surgical Site Infections

Process Surveillance

SSI rates, Benchmark with International Standards

Total: 376Surgical procedures

Gallbladder surgery	24 / 376 (6 %)
Herniorrhaphy	63 / 376 (16 %)
Other operative procedures not included in the NHSN categories	34 / 376 (9 %)
Other musculoskeletal	24 / 376 (6 %)
Other integumentary system	61 / 376 (16 %)
Abdominal hysterectomy	22 / 376 (5 %)
Limb amputation	4 / 376 (1 %)

SSI Report: Lenght of Stay, Lenght of Procedures, Numbers of SSIs, Microorgamism Profile

Surgical Procedures Characteristics, and Surgical Site Infections Process

Process Surveillance

SSI rates, Benchmark with International Standards

Surgical Procedure	Inpatient Stay	Type (Emergency/Programmed)	Average Duration	Number of surgical site infections	Surgical site infection rate	Microorganisms
Gallbladder surgery	0	0/24	1 hours 30 minutes 0 seconds	0	0	
Other operative procedures not included in the NHSN categories	0	1/33	0 hours 15 minutes 0 seconds	0	0	
Ovarian surgery	0	0/1	0 hours 25	0	0	

SSI Report: Benchmark with CDC NHSN and with INICC Per Surgical Procedure Code

Surgical Procedures	SSI rate of this hospital	SSI of CDC- NHSN	SSI of INICC
Gallbladder surgery	0	0.60	2.50
Other operative procedures not included in the NHSN categories	0		
Ovarian surgery	0		
Other integumentary system	0		
Other genitourinary	0		
Herniorrhaphy	1.59	2.30	1.80
Craniotomy	0	2.60	4.40
Gastric surgery	0	2.30	5.50
Other musculoskeletal	0		
Small bowel surgery	0	6.10	5.50

Conclusions I

- According with WHO paper, based on INICC peer review publications, HAI rates in ICUs internationally are higher than in USA and Europe.
- INICC was successful training health care workers of 50 limited resources countries since 1998 to use incidence density of HAI rates; and all them currently are members of INICC.
- INICC was successful to generate a useful benchmark to compare HAI rates between hospitals and countries.
- INICC was successful to measure adverse consequences of HAI (mortality, extra length of stay, cost, bacterial resistance)

Thank you very much

Contact us by email: Info@inicc.org

Contact us in our Web Page: www.INICC.org

Follow us : - in facebook in "Hospital Infection INICC" - in Content in "@inicc_org"